Effect of Hyperthermia with Interferon on Malignant Cell Growth and Cell Cycle

Tetuya SATOU

First Department of Surgery
Nagasaki University School of Medicine

Received for publication, December 26, 1987

ABSTRACT: Combined therapy of hyperthermia with interferon-β (rHuIFN-β) for carcinoma using HeLa cells was evaluated by in vitro study. Inhibitory effect on cell growth curve was observed in the treatment of rHuIFN-β and/or hyperthermia alone. On the other hand, combined treatment much more promoted the inhibitory effect rather than single method.

From the standpoint of the cell cycle on the basis of a result of flow cytometry study, a reduction of the G1-phase cells population and accumulation of the S-phase cells were significantly noted. Furthermore, the addition of hyperthermia significantly recruited the S-phase cells. When administering rHuIFN-β, the activity of DNA polymerase α was reduced and that of DNA polymerase β was inversely increased. While hyperthermia was added, both the levels of DNA polymerase α and β activities were decreased. It was different patterns in terms of enzymatic activities regarding accumulation of the S-phase cells.

In conclusion, in order to get the cytocidal effect on the HeLa cells, the ideal timing applying combined treatment of HuIFN-β with hyperthermia is that HuIFN-β should be first given, thereafter hyperthermia is applied so as to adjust to the S-phase of the cell cycle which is greatly sensitive to hyperthermia.

INTRODUCTION

The combination treatment of hyperthermia with anticancerous drugs is expecting and promising a long survival of tumor-bearing host. Recently development of interferon (IFN) focused on an attention to the cytocidal and host-mediating actions on cancer cells and it is applied for a combination therapy with hyperthermia.

Gnoveman\(^1\) in 1984 reported that combined therapy of hyperthermia with IFN produced a great effect in cell-killing of cultured human cancer cells. The same results were reported by others\(^2\)\(^-\)\(^5\). However, the mechanism of cytocidal effect of this combined therapy is not yet made clear.

The aim of this study is to clarify the cytocidal mechanism of combined therapy of IFN with hyperthermia from the standpoint of cell kinetics in cultured cells and also to make clear of proper timing of administrations of IFN and hyperthermia as well as availability of this therapy in view of DNA polymerase activity which is needed for reproduction and repair of DNA synthesis process.

MATERIALS AND METHODS

1. Cells and cell culturing

HeLa (human cervical carcinoma) cells were kindly provided by Dept. Viral. Ricketts., Natl. Inst. Health. All cells were used exponentially
growing cells. Cells were grown as monolayers in plastic flasks at 37°C in a 5% CO₂, growth medium used was RPMI1640 (GIBCO) supplemented with 10% fetal calf serum and antibiotics. Exponentially growing cells were subcultured, utilizing a 0.25% Trypsin, 0.02% EDTA solution.

2. Drugs and Hyperthermia

Human recombinant interferon α, β and γ, rHuIFN-α (Ro22-8181) and rHuIFN-γ (TRP-2) were obtained from TAKEDA YAKUHIN, rHuIFN-β (GKT-β) was obtained from KYOWA HAKKO. rHuIFN-α, β and γ were solved to RPMI1640 with 20% FCS, and then they were stored at -80°C.

The cells were placed in a water bath (Incubator BT-23 Yamato Scientific Co, Ltd) for the assigned length of time. Temperatures were readed with thermometer, the temperature was maintained.

3. Antiproliferative Assays

Cell proliferation was determined to growth curve and colony formation. Exponentially growing cells were plated at 10⁵ cells to 6-Well Multidish (Nunc), after 24 hours, rHuIFN-β was added to Wells continously, Wells were incubated, and then cells were trypsinized and counted.

Colony formation was determined by preparing a uniform single cell suspension and adding 500 cells to each 6-Well Multidish. After 24 hours, heat and/or rHuIFN-β treatment was done, and then Wells were incubated 9 days at 37°C in a 5% CO₂, humidified atmosphere. At appropriate times, 6-Well was fixed with 95% ethanol and stained with Giemsa. Colonies with greater than 50 cells were counted.

4. Cell cycle analysis

Cell cycle distributions were determined by flow cytometry (FCM). Propidium Iodide (PI) staining was done as described by Nomura.

Cells were incubated at 37°C for 30 minutes. The reaction mixture was kept on ice and the reaction was stopped. The radioactive DNA product was collected on a paper disc made of DEAE-cellulose, placed in liquid scintillation counter (ALOKA, LSC-903) to determine radioactivity per sample. DNA polymerase activity was determined by subtracting polymerase α activity.

5. Determination of DNA polymerase activities

Before heating at 43°C, treating with rHuIFN-β or control cells were harvested and the cells (10⁷) were centrifuged and washed twice in PBS. The pellet was resuspended in 0.5 ml of 50mM Tris-HCl (pH7.6) containing 0.1 mM EDTA, 0.2mM dithiothreitol, 10% glycerol, 0.5M KCl.

Cells were minced at two times by sonicator (W-220F, Heat system company), and then centrifugation was conducted in tubes at 6,000 rpm for 20 minutes, the supernate was used as an enzyme source. All procedures were carried out at 0-4°C.

DNA polymerase α activity

5 µl of the enzyme source and 20 µl of polymerase α reaction mixture were incubated for 30 min at 37°C. The reaction mixture of 20 µ1 contained the following : 50mM Tris-HCl (pH7.5), 1mM dithiothreitol, 8mM MgCl₂, 400 µg/ml of bovine serum albumine, 80 µg/ml of activated DNA, 50 µM of all four deoxyribonucleoside triphosphates, 50 µM (³H) dTTP, 12% glycerol. The reaction mixture was kept on ice and the reaction was stopped. The radioactive DNA product was collected on a paper disc made of DEAE-cellulose (DE 81), the paper disc was washed with 5% Na₂HPO₄, distilled water and alcohol. The samples were placed in liquid scintillation counter (ALOKA, LSC-903) to determine radioactivity per sample. Polymerase β activity was determined by the polymerase assay due to inhibition of polymerase α by N-ethylmaleimide (NEM, 3.75mM). Polymerase α activity was determined to subtract polymerase β activity.

DNA polymerase β activity

DNA polymerase β was assayed in 50mM T
MgCl₂, 400 μg/ml of bovine serum albumine, 80 μg/ml of activated DNA, 50 μM of all four deoxynucleoside triphosphates, 50 μM (³H) dTTP, 12% glycerol, 100mM KCl and 15 μl NEM (10mM). The β-assay was strictly specific for the polymerase β activity.

5. Measurement of protein concentration
Protein concentrations of assaying crude extracts were determined by Lewry method. Enzyme activities were indicative of cpm/μg protein.

RESULTS

1. Effect of hyperthermia on inhibition of cell proliferation and cell cycle
The sensitivity of HeLa cells to hyperthermia was tested by colony forming assay method at 37, 39, 41, 43 and 45°C. As shown in Fig. 1, colony forming rate (lethal rate of living cells) varied with varying temperature and the duration of action. It was confirmed that critical temperature was a range of 41 to 43°C. Therefore, the experiment in this study was made on the condition of 43°C temperature and 1 hour duration.

Fig. 1. Survival curves for HeLa cells in culture heated at different temperatures for varying lengths of time, colony number of treatment/colony number of 37°C incubation.

Fig. 2. showed the growth curved and colony formation, compared heated cells at 43°C for 1 hour with control cells at 37°C. As large as 21% of cytotoxic rate was shown at 43°C for 60 min. However, proliferation was not completely ceased by heating at 43°C and it continued to grow with time in spite of some differences between the control.

In view of the cell cycle DNA histogram showed a decrease in G1-phase, slight increase in S-phase and remarkable increase in G2M-phase at 24 hours, but an increase in G1-phase and a decrease in G2M-phase at 48 hours, and later the ratios of G₁, S and G₂M were almost the same as the control at 72 hours as shown in Fig. 3.

2. Effect of rHuIFN on inhibition of cell growth
The inhibitory effect of rHuIFN-α, β, γ on the cell cycle was compared. The growth curves after 5 days administration of HuIFN-α, β, γ was illustrated in Fig. 4. The inhibitory effect of HuIFN-β and γ was significantly pronounced rather than that of HuIFN-α and that of HuIFN-β and γ was almost similar. As a result of observing an alteration of the cell cycle, IFN-α, β administration led to a decrease in G1-phase cells and an increase in S-
phase cells, in particular, IFN-β brought a significant accumulation of S-phase cells. On the other hand, IFN-γ induced an increase in G1-phase cells and a decrease in S-phase cells. It was different from the action on alteration of the cell cycle between IFN-α, β and γ, and it is characteristic of accumulation of S-phase cells in administering IFN-β (Fig. 5).

Further study was made on a relation between inhibitory effect of cell proliferation and the cell cycle in detail. Fig. 6 showed that continuous administration of rHuIFN-β with a concentration of 250, 500, 1000 U/ml revealed the inhibition of cell proliferation in proportion to a dosis administered. However, these effects were cytostatic at each concentration of IFN-β. And then the effects of IFN-β on the cell cycle were also evaluated as shown in Fig. 7. While 500 U/ml of IFN-β were given, the cell cycle altered into a decrease in G1-phase, an increase in S-phase and slight accumulation of G2M-phase on day 3 and this
tendency was most prominent on day 5. An increase in S-phase and G₂M-phase cells as attributed to the concentration and time, although this accumulation was transient and by exclusion of IFN-β, a pattern of DNA histogram returned to be normal.

3. Combined effect of hyperthermia with rHuIFN-β

Combined effect of hyperthermia with rHuIFN-β was evaluated by using colony formation method as shown in Fig. 8. Continuous infusion of HuIFN-β of 250 and 500U/ml with hyperthermia at 39, 41 and 43°C for 1 hour showed a cytocidal effect which was synergic regardless a concentration of IFN-β.

4. In order of treatment with IFN-β and hyperthermia

Proper timing of IFN-β administration was assessed on the growth curve (Fig. 9). It was defined by regrowth assay that preceding IFN-β administration to hyperthermia application arose a restart of cell proliferation in fresh medium which was replaced on day 5. In contrast, the regrowth assay method revealed that hyperthermia at 43°C for 1 hour following administration of IFN-β of 500U/ml for 5 days led to a significant cytocidal effect.

5. Alteration of the cell cycle during combined therapy of IFN-β with hyperthermia

Fig. 10 shows a result of combined therapy of IFN-β with hyperthermia on DNA histogram. A 5-day administration of IFN-β of 500
U/ml revealed a decrease in G1-phase cells and an increase in S-phase cells and one day culture in fresh medium resulted in slight increase in G2M-phase cells and quickly reversed accumulation of S-phase cells as shown in B line in Fig. 10.

Fig. 10. DNA histograms of cell cycle movement of control and IFN-β combination with hyperthermia.
A: control
B: after continuous infusion of rHuIFN-β 500U/ml for 5 days, incubated in fresh medium
C: after continuous infusion of rHuIFN-β 500U/ml for 5 days, heated at 43°C for 1 hr, incubated in fresh medium

On the other hand, one day culture in fresh medium following a 5-day continuous administration of rHuIFN-β with hyperthermia at 43°C for 1 hour produced a significant reduction of G1-phase cells and apparent accumulation of S-phase cells as shown in C line in Fig. 10.

6. DNA polymerase activity in combination of rHuIFN-β with hyperthermia

A comparative study between hyperthermia at 43°C for 60 minutes with IFN-β of 500U/ml for 5 days and hyperthermia at 43°C for 60 minutes following continuously administering IFN-β of 500U/ml for 5 days was made by measurement of soluble DNA polymerase α and β activities as shown in Fig. 11.

Hyperthermia induced a decrease in polymerase activity in comparison with the control. In contrast, IFN-β led to a high activity of polymerase β in spite of low activity of polymerase α. Combination of IFN-β with hyperthermia much more reduced DNA polymerase activity. There was statistically significant difference in polymerase activity between IFN-β alone and in combination with hyperthermia despite no difference between hyperthermia and combination groups.

Fig. 11. Activity of DNA polymerase after treatment of HeLa cells with IFN-β and/or hyperthermia.

DISCUSSION

Since HERON 2) reported that the inhibitory action of IFN on cell proliferation was enhanced by heating combination therapy of IFN with hyperthermia has become concentrated on the treatment of carcinomas. GROVEMAN 1) also noted that IFN-α and β revealed effective cell-killing action in human cultured cells of carcinoma of the urinary bladder in combination with mild hyperthermia. FLEISCHMANN 3)4) reported that the inhibitory effect of IFN-α, β and γ on cell proliferation to B-16 melanoma cells of mice was enhanced with increased temperature.

However, the mechanism of inhibitory action of IFN combined with hyperthermia is not yet made clear. In this study, the relation between hyperthermia and cell cycle was studied by using flow cytometry method to clarify the mechanism on inhibition of cell
proliferation. Kano8 noted that hyperthermia resulted in induction of block in S and G\textsubscript{2} phases of cancer cells. In this study, an increase in G\textsubscript{2}M-phase and a decrease in G\textsubscript{1}-phase were noted at 24 hours after, although at 72 hours an increase of G\textsubscript{1}-phase and a decrease in G\textsubscript{2}M-phase were noted. This result indicates that the inhibitory effect of hyperthermia is transient and temporary. Hyperthermia alone is not sufficient for antigrowth effects on tumor cell proliferation.

On the other hand, Creasey9 analysed IFN action which influenced cell cycle of human melanoma cells with the use of rHuIFN-\textalpha. He clarified the results of elongation from G\textsubscript{1} to S phase and increase in S phase. Balkwill1011 evidenced an increase in G\textsubscript{2}M-phase cells by using MCF-7 cells and HuIFN-\textbeta and a prolonged transmission from G\textsubscript{1} to S phases by using fibroblast cells and HuIFN-\textalpha and \textgamma. He pointed out from the above results that IFN exerts on different phases of the cell cycle in accordance with the kinds of IFN itself.

In this series, the effects of all kinds of IFN on HeLa cells were evaluated in the analysis of the growth curve and the cell cycle. The inhibitory effect by continuous infusion of 500U/ml rHuIFN-\textbeta and \textgamma were still more potent than that of rHuIFN-\textalpha. The action of rHuIFN-\textbeta was almost the same as that of rHuIFN-\textgamma. It is characteristic of a decrease in G\textsubscript{1}-phase and an increase in S-phase cells by IFN-\textalpha and \textbeta in view of the cell cycle in contrast with IFN-\textgamma which evolves a consequence of an increase in G\textsubscript{1}-phase and a decrease in S-phase cells.

As for alteration of the cell cycle for cell damage by heat in combination with the use of IFN, Bhuyan12 clarified that hyperthermia is highly sensitive to S-phase cells. It is reasoned that IFN-\textbeta is the first choice in combination with hyperthermia because IFN-\textbeta is much more stable for heat than IFN-\textgamma.

Inhibition of cell proliferation by combined therapy of IFN-\textbeta with hyperthermia is potentiated on the condition of a concentration of 250 to 500U/ml of rHuIFN-\textbeta at 39, 41, and 43\degree C of heating as already reported by others. In this series the effect is recognized on the condition of 39\degree C and 41\degree C of low grade hyperthermia. Kurik5 reported the combination of accumulation in G\textsubscript{2}M-phase. Needless to say it is of great benefit to enhance the effects of combined therapy on cell damage. It implies that accumulation of S-phase cells corresponding to retardation of DNA synthesis facilitates cell damage by combined therapy of IFN with hyperthermia.

The measurement of DNA polymerase \textalpha and \textbeta activities is essential to evaluate a change in the S-phase of the cell cycle. Spryo13 and Kampenga14 evidenced that a reduction of polymerase \textalpha and \textbeta activities occurred by hyperthermia. On the other hand, Lundblad15 reported that the use of rHuIFN-\textbeta to human glioma cells resulted in accumulation of S-phase cells and reduction of DNA polymerase activity. In this series, it was defined according to Matsukage method7 that polymerase activities of HeLa cells exposed to heating of 43\degree C had become gradually reduced until 45 min and later it showed a stable value keeping a plateau.

Meanwhile, continuous administration of IFN-\textbeta depressed DNA polymerase \textalpha activity and increased DNA polymerase \textbeta activity. It means that repair process of DNA synthesis preserves as it is, and if IFN-\textbeta is withdrawn, a pattern of DNA histogram approaches to the control histogram. While hyperthermia is combined with IFN-\textbeta, DNA polymerase \textalpha activity is much more depressed with a reduction of DNA polymerase \textbeta activity. It is suggestive of a depressed ability of DNA repair process with reduced activity of DNA polymerase \textbeta. Behavior of cells accumulated in S-phase is influenced by whether DNA polymerase \textbeta activity is preserved or not.

It is accepted that the inhibitory action of IFN on cell proliferation not only relates to direct action but to mediate indirectly the immune system of a tumor-bearing host. IFN-\textalpha and \textbeta stimulate Natural Killer cells and IFN-\textgamma also exerts as macrophage activating factor. Therefore, effectively depressed proliferation of malignant cells can be obtained by stimulation of the immune response of a host by IFN administration and the addition of hyperthermia, providing direct or indirect antitumor effect to the tumor-bearing host. From the result of this study, anti-
tumor effect can be expected by combined therapy of IFN with hyperthermia for the treatment of advanced cancer patients.

ACKNOWLEDGEMENT

I thank Professor M. ToMita and Dr. Y. TAGAWA, the First Department of Surgery, Nagasaki University School of Medicine for his suggestion and valuable comments. And also thank all the coworkers.

REFERENCE

