

Review Article

Gastritis with Distinctive Histopathology (Non-*Helicobacter Pylori* Gastritis)

Kunihiko Murase

Second Department of Internal Medicine, Nagasaki University School of Medicine

Distinctive gastritis refers to gastritis with distinctive histological and endoscopic features, including the presence of granulomas, the increased number of intraepithelial lymphocytes, eosinophilic infiltration, thickening of the subepithelial collagen band, and foveolar hyperplasia. Several forms of distinctive gastritis are reviewed in this issue, since understanding of its pathogenesis and the accurate diagnosis are implicated in clinical prognostic biomarkers and lead to a new therapeutic approach.

ACTA MEDICA NAGASAKIENSIA 46: 9-14, 2001

Key Words: distinctive histology, gastritis, granulomatous gastritis, focal active gastritis, lymphocytic gastritis

Introduction

Helicobacter pylori (*H. pylori*) and nonsteroidal antiinflammatory drugs (NSAIDs) are the most common causes of gastritis (1, 2). Many studies have shown that successful eradication of *H. pylori* markedly reduces the rate of peptic ulcer relapse, together with a low recurrence rate of *H. pylori* infection (3-5). Only a few patients with *H. pylori* infection treated successfully develop reflux esophagitis and other symptoms without reinfection with *H. pylori* (6-8).

A distinctive form of gastritis has recently been described in association with *H. pylori* infection (9-11). A major problem in classifying gastritis is the simultaneous coexistence of two or more types of gastritis. A low frequency of *H. pylori* infection is reported in patients with inflammatory bowel disease (IBD) (12, 13), however, there is some evidence to suggest that Crohn’s disease-associated gastriatis are masked by *H. pylori* gastritis (10, 11).

Here I review several distinctive forms of gastritis to help clinicians to make the accurate diagnosis and to manage patients with non-*H. pylori* gastritis or those in whom *H. pylori* had been previously eradicated.

Granulomatous gastritis

Granulomatous gastritis occurs in association with systemic granulomatous diseases such as tuberculosis (14), sarcoidosis (15), neoplastic disease (16), and idiopathic granulomatous gastritis (17), where the most common cause is Crohn’s disease (18-20).

Crohn’s disease is a chronic disease of unknown etiology that can affect any part of the gastrointestinal tract, and is characterized by aphthoid ulceration, cobble stoning, transmural chronic inflammation, and granuloma formation (18). In the proximal gastrointestinal tract, the gastric antrum and the duodenum are most frequently affected, and the encountered lesions on endoscopic examination consist of aphthoid erosions, ulcers, thickening of folds, nodules, erythema and stenosis (21). It has recently been suggested that a bamboo joint-like appearance is a characteristic endoscopic finding of Crohn’s disease, representing swollen longitudinal folds traversed by erosive fissures in Crohn’s disease (Fig. 1-A), although its pathogenesis is unclear (22, 23). When upper gastrointestinal symptoms are present, the clinical course may progress in parallel with activities in the ileum or the colon (19).

Chronic gastritis and duodenitis are common in patients with Crohn’s disease; however, the majority of cases are not associated with *H. pylori* infection (12, 13). A few reports have stressed that previous use of sulphasalazine is associated with a reduced risk of infection with *H. pylori* in patients with Crohn’s disease (24, 25). Epithelioid granuloma is considered a histological hallmark of Crohn’s disease (Fig. 1-B), but such granulomas are only found in 2-5% of patients with gastric Crohn’s disease (18, 19). Recently, focal active gastritis is recognized as a form of inflammation that
 seems to be typical of gastric Crohn's disease (Fig. 1-C) (26-28), which resembles focal cryptitis observed in the colonic mucosa. In our study, focal active gastritis was detected in 28% of patients with known Crohn's disease. The prevalence rate increased to 54% in H. pylori-negative patients with Crohn's disease, but it was not found in patients with ulcerative colitis or non-IBD patients (28). Thus, we believe that gastric involvement in Crohn's disease is not rare as previously thought. H. pylori-associated gastritis may mask focal active gastritis in patients with Crohn's disease, which may be identified a successful eradication of H. pylori (11).

Oberhuber et al (26) reported a high incidence of focal active gastritis in Crohn's disease and described accumulation of CD68-positive macrophages in this lesion. In our study (28), mast cells accumulated in the peripheral area of focal active gastritis, whereas macrophages accumulated in the center of the lesion. Such accumulation of mast cells and macrophages might be associated with the pathogenesis of focal active gastritis in patients with Crohn's disease.

Lymphocytic gastritis

Lymphocytic gastritis is a new entity described in 1985 by Haot et al (29), and is histopathologically characterized by accumulation of intraepithelial lymphocytes on the surface and foveolar epithelium. Endoscopically, enlarged folds bearing small nodular elevations surmounted by erosions are found particularly in the corpus and the fundus. Lymphocytic gastritis is associated with celiac disease (30, 31), H. pylori gastritis (31, 32), varioliform gastritis (33, 34), mucosal associated lymphoid tissue (MALT) lymphoma (35, 36), and gastric cancer (35). This suggests that the lymphocytic gastritis may be associated with an increased risk of developing lymphoma or carcinoma. We have a case of lymphocytic gastritis associated with signet ring cell carcinoma of the stomach (Fig. 2).

Patients with lymphocytic gastritis show infiltrations of neutrophils and eosinophils and mononuclear inflammatory cells, and foveolar hyperplasia in the corpus mucosa. The diagnosis threshold for accumulation of inflammatory cells in lymphocytic gastritis is usually taken as > 25 intraepithelial lymphocytes per 100 epithelial cells (37). Immunohistochemical studies have shown that the intraepithelial lymphocytes in lymphocytic gastritis are exclusively CD3 positive T cells, and approximately 80% of them are CD8 positive (37, 38). Intraepithelial lymphocytes are likely to participate in regulation of mucosal inflammatory reaction (39, 40).

There are smaller numbers of H. pylori in lymphocytic gastritis than in H. pylori-positive patients who did not have lymphocytic gastritis (31, 41). Few studies have indicated that eradication of H. pylori or treatment with histamine 2 (H2) receptor antagonists or proton pump inhibitors in these patients results in a significant improvement in intraepithelial lymphocytic infiltration (42-45), although lymphocytic gastritis may, in part, represent a specific immune response to H. pylori (46, 47).

Collagenous gastritis

Collagenous gastritis is an extremely rare disorder with only seven case reports in the English literature, and little is known about its etiopathogenesis and natural history (48-54). Nodular and erythematous lesions in the gastric corpus are common endoscopic findings. Biopsy specimens show a thick subepithelial band, and thickening of the collagen plate of more than 10 μm has been proposed as a threshold criterion for the histological diagnosis of collagenous gastritis (53). Recently its associations with lymphocytic gastritis, sprue, and lymphocytic colitis as well as collagenous and lymphocytic colitis suggest a common pathogenesis that may empirically include collagenous gastritis in the same disease spectrum (50, 55). Ultrastructural examination of the gastric biopsy specimens shows a patchy subepithelial band of collagen fibers. Capillaries, lymphocytes, eosinophils, mast cells, and fibroblasts were seen entrapped in this band (53). Mast cells can induce migration and proliferation of fibroblasts and can also stimulate collagen synthesis. Mast cells entrapped in the collagen band and located in the lamina propria also showed evidence of degranulation (53, 54).

Immunohistochemical studies have shown signs of the local immune activation in all biopsy specimens, including overexpression of HLA-DR by epithelial cells, increased numbers of CD3-positive intraepithelial lymphocytes, and CD25-positive cells in the lamina propria (53, 54). These findings suggest that the histopathological lesions of collagenous gastritis may be mediated by a local immune process.

Eosinophilic gastritis

Eosinophilic gastritis is defined as eosinophilic infiltration into the gastric wall with no evidence of parasitic or extraintestinal disease (56). Peripheral blood eosinophilia is often present, but some patients do not have this
Fig. 1 Crohn’s disease. A: Gastroendoscopy showing bamboo joint-like appearance with swollen longitudinal folds. B: Noncaseous granuloma with giant cells. Magnification, ×100 C: Focal infiltration of polymorphs and mononuclear inflammatory cells in the foveola or gastric glands. Magnification, ×200.

Fig. 2 Lymphocytic gastritis. Numerous lymphocytes in the epithelium. Magnification, ×200.

Fig. 3 Eosinophilic gastritis. Gastroendoscopy showing multiple gastric ulcers (A). Note the eosinophils particularly beneath the luminal epithelium (B) and sometimes within the epithelium and foveola (C). Magnification, ×100.
finding. A portion of patients develop symptoms following ingestion of specific food, suggesting that food allergy plays a role in the pathogenesis of eosinophilic gastritis (57). Eosinophilic infiltration into the stomach occurs commonly in a variety of different inflammatory conditions, including collagen disease (58), parasitic infection (59), and drug allergy such as interferon (60).

The clinical manifestations of eosinophilic gastritis depend upon the layers of stomach involved. The involvement of a predominantly mucosal layer with ulcers tends to lead to malabsorption, anemia and protein loss from gut (61) (Fig. 3-A). When the muscle layers are predominantly involved, the condition may be confused with malignancy because it often causes the gastric outlet obstruction (62, 63), in addition, the serosal involvement is frequently accompanied by eosinophilic ascites (64). Gastric antral biopsies are more productive, and eosinophils may be found prominently beneath the luminal epithelium or sometimes within the foveol (Fig. 3-B, C).

Eosinophilic gastritis usually responds to corticosteroid, H2 receptor antagonists, and proton pump inhibitor therapy (58, 61), although cases resistant to these therapies (64, 65) or those with spontaneous resolution have been reported (66).

Hyperplastic gastropathies

Hyperplastic gastropathy can be divided into the two main categories, Menetrie’s disease and hyperplastic hypersecretory gastropathy. Patients with Menetrie’s disease have giant gastric folds and hypoproteinemia, on the endoscopic examination, large gastric folds (> 10 mm in diameter) are found, which correspond to the echogenic thickening of the mucosal layer with or without cystic components on ultrasonography. Histopathologically, these folds represent the increased epithelial cell mass mainly consisting of mucous cells presenting elongated and sometimes cystically dilated foveola without parietal cell hyperplasia, and mildly infiltrated inflammatory cells (67). The cause of this disease is unknown, although various factors such as autoimmune, allergic, neoplastic, and infective (primarily cytomegalovirus and occasionally H. pylori, herpes simplex and mycoplasma) mechanisms have been proposed (68-71). Lymphocytic gastritis may share a common pathogenesis with Menetrie’s disease (72). Menetrie’s disease is associated with H. pylori in more than 90% of patients (69), and it is thought to be a special form of H. pylori gastritis in these patients.

In hypertrophic hypersecretory gastropathy, the parietal cells rather than the foveolar cells proliferate to form the enlarged folds (70). Some patients with hypertrophic hypersecretory gastropathy are ultimately confirmed to have Zollinger-Ellison syndrome.

It has been reported that eradication of H. pylori, or the use of proton pump inhibitors or antibiotic therapy improves fold width, foveolar length, and inflammatory infiltrates in patients with hyperplastic gastropathy (71-77). Increased productions of interleukin-1/β and hepatocyte growth factor caused by H. pylori infection may contribute to the fold thickening of the stomach by stimulating epithelial cell proliferation and foveolar hyperplasia in patients with enlarged fold gastritis (78).

Acknowledgment

The author thanks Drs. Hisashi Furu, Ken Ohnita, and Hajime Isomoto, and Prof. Shigeru Kohno from Second Department of Internal Medicine, Nagasaki University School of Medicine for their support and review of this manuscript.

References

Kunihiro Murase: Gastritis with Distinctive Histopathology

