RECIPROCITY FORMULAS FOR \(p \)-ADIC DEDEKIND SUMS

By

Aich KUDO

Dedicated to Professor Katsumi Shiratani on his 62nd birthday

(Received Oct. 29, 1993)

1. Introduction

In this paper, we consider the Carlitz's reciprocity formulas \(p \)-adically, using \(p \)-adic Dedekind sums.

For positive integers \(h, k \) and \(m \), the higher-order Dedekind sums are defined by

\[
S_{m+1}^{(r)}(h, k) = \sum_{a=0}^{k-1} \frac{B_{m+1-r} \left(\frac{a}{k} \right) B_r \left(\frac{ha}{k} \right)}{B_r \left(\frac{a}{k} \right)}, \quad 0 \leq r \leq m + 1,
\]

where \(B_n(x), n \geq 0, \) is \(n \)-th periodic Bernoulli function. For \(m \) even, we have \(S_{m+1}^{(r)}(h, k) = 0 \). Hence, in the sequel, we assume that \(m \) is odd positive integer. For \(r = 0 \) and \(r = m + 1 \), \(S_{m+1}^{(0)}(h, k) = k^{-m}B_{m+1} \) and \(S_{m+1}^{(m+1)}(h, k) = d^{m+1}k^{-m}B_{m+1}, \) \(d = (h, k) \), are essentially the Bernoulli numbers. Carlitz's reciprocity formula is written as

\[
S_{m+1}^{(r)}(h, k) = \sum_{a=1}^{m+1-r} \left(\begin{array}{c} m+1-r \\ r \end{array} \right) k^a S_{m+1}^{(m+1-r-a)}(h, k)
\]

provided \((h, k) = 1 \) and \(0 \leq r \leq m \). For \(r = 0 \), this formula reduces to Apostol's reciprocity theorem. And for \(r \geq 1 \), this derives several interesting formulas \([2]\).

2. \(p \)-adic Dedekind sums

Let \(p \) be a prime number. Let \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \) be the ring of rational \(p \)-adic integers and the field of rational \(p \)-adic numbers, respectively. The \(p \)-adic Dedekind sum is a \(\mathbb{Q}_p \)-valued analytic function on \(\mathbb{Z}_p \) which interpolates the numbers \(k^mS_{m+1}^{(r)}(h, k) \) with respect to \(m \). It was first constructed by Rosen and Snyder \([7]\) and generalized by the author.

Put \(e = p - 1 \) or 2 according as \(p > 2 \) or \(p = 2 \). Let \(\alpha \) be an even integer such that
0 < α ≤ e and let r, h, k be positive integers. Then, we obtained in [6] the following

Theorem. There exists a p-adic analytic function \(S_{p, α}(s; r, h, k) \) of variable \(s \in \mathbb{Z}_p \) which satisfies

\[
S_{p, α}(m; r, h, k) = k^m S^{(r)}_{m+1}(h, k) - p^{m-r} k^m S^{(r)}_{m+1}(ph, k),
\]

for all integers \(m \) such that \(m ≥ r \) and \(m + 1 ≡ α \pmod{e} \).

Let \(d \) be a positive integer. Then, from the formula

\[
S^{(r)}_{m+1}(dh, dk) = d^{-m} S^{(r)}_{m+1}(h, k),
\]

we see that

\[
S_{p, α}(s; r, dh, dk) = d^α S_{p, α}(s; r, h, k),
\]

for all \(s \in \mathbb{Z}_p \) and that, if \(p \mid k \),

\[
S_{p, α}(m; r, h, k) = k^m S^{(r)}_{m+1}(h, k) - k^m S^{(r)}_{m+1}(h, k/p),
\]

for \(m + 1 ≡ α \pmod{e} \), \(m ≥ r \). When \((h, k) = 1 \), we denote by \(h^*_k \) a positive integer satisfying \(h^*_k h ≡ 1 \pmod{k} \). Then, since

\[
S^{(r)}_{m+1}(h, k) = S_{m+1}^{(m+1-r)}(h^*_k, k),
\]

it follows that, if \((h, k) = (p, k) = 1 \),

\[
S_{p, α}(s; 1, h^*_k, k) = k^m s_m(h, k) - p^{m-1} k^m s_m(p^h, k),
\]

for all positive integers \(m, m + 1 ≡ α \pmod{e} \). Here,

\[
s_m(h, k) = \sum_{a=1}^{k-1} B_m \left(\frac{ha}{k} \right) = S_{m+1}^{(m)}(h, k), \quad (h, k) = 1,
\]

mean Apostol’s higher-order Dedekind sums. Hence, Rosen-Snyder’s functions \(S_p(s; h, k) \) are given by \(S_{p, α}(s; 1, h^*_k, k) \) when \((h, k) = (p, k) = 1 \).

Now, we define \(S_{p, α}(s; r, h, k) \) for \(r = 0 \). Let \(L_p(s, ω^a) \) be Kubota-Leopoldt’s \(p \)-adic \(L \)-function for the character \(ω^a \), where \(ω \) is Teichmüller character on the group \(\mathbb{Z}_p^* \) of units in \(\mathbb{Z}_p \). We put

\[
S_{p, α}(s; 0, h, k) = -(s + 1)L_p(-s, ω^a),
\]

for any positive integers \(h \) and \(k \). Then, we have

\[
S_{p, α}(m; 0, h, k) = (1 - p^m) B_{m+1}
\]

\[
= k^m S^0_{m+1}(h, k) - p^m k^m S^0_{m+1}(ph, k),
\]

for \(m + 1 ≡ α \pmod{e} \), \(m > 0 \).

3. Reciprocity formulas

We assume that \(p \mid hk, (h, k) = 1 \). First, let \(p \mid k \). Let \(r ≥ 0, m + 1 ≡ α \pmod{e} \) and \(m ≥ r + 1 \). Then we have

\[
S_{p, α}(m; r + 1, h^*_k, k) = k^m S^{(r+1)}_{m+1}(h^*_k, k) - k^m S^{(r+1)}_{m+1}(h^*_k, k/p)
\]

\[
= k^m S^{(m-r)}_{m+1}(h, k) - k^m S^{(m-r)}_{m+1}(h, k/p).
\]

Similarly we have
Reciprocity formulas for \(p \)-adic Dedekind sums

\[
S_{p,a}(m; r, h_k^*, k) = k^m S_{m+1}^{(m+1-r)}(h, k) - k^m S_{m+1}^{(m+1-r)}(h, k/p),
\]
and

\[
S_{p,a}(m; j, h_j^*, h) = h^m S_{m+1}^{(j)}(k_j^*, h) - p^{m-j} h^m S_{m+1}^{(j)}(p k_j^*, h)
= h^m S_{m+1}^{(m+1-j)}(k, h) - p^{m-j} h^m S_{m+1}^{(m+1-j)}(k/p, h),
\]
for \(0 \leq j \leq r + 1 \). Hence

\[
\left(m + 1 \right) S_{p,a}(m; r + 1, h_k^*, k) + \left(m + 1 \right) S_{p,a}(m; r, h_k^*, k)
- \left(m + 1 \right) h^{r+1} \sum_{j=0}^{r+1} \left(r + 1 \right) (-k)^j S_{p,a}(m; j, h_k^*, h)
= \left(m + 1 \right) h^m S_{m+1}^{(m-r)}(h, k) - \left(m + 1 \right) k^m S_{m+1}^{(m+1-r)}(h, k)
- \left(m + 1 \right) h^{r+1} \sum_{j=0}^{r+1} \left(r + 1 \right) (-k)^j S_{m+1}^{(m+1-j)}(k, h)
- p^m \left(\left(m + 1 \right) h(k/p)^m S_{m+1}^{(m-r)}(h, k/p) + \left(m + 1 \right) (k/p)^m S_{m+1}^{(m+1-r)}(h, k/p) \right)
- \left(m + 1 \right) h^r \sum_{j=0}^{r} \left(m + 1 - r \right) \left(1 - p^{m-j} h^m \right) S_{m+1}^{(m+1-r-j)}(-k) B_{m+1-j} B_j,
\]
for \(r \geq 0 \) and \(m \geq r + 1 \) such that \(m + 1 \equiv \alpha \pmod{e} \). The right hand side is written formally as

\[
\left(m + 1 \right) \{ B' (Bh - B'k)^{m+1-r} - p^m B' (Bh - B'k/p)^{m+1-r} \}.
\]

Next, let \(p \mid h \). Then, for \(m + 1 \equiv \alpha \pmod{e} \), \(m \geq r + 1 \), \(r \geq 0 \),

\[
S_{p,a}(m; r + 1, h_k^*, k) = k^m S_{m+1}^{(r+1)}(h_k^*, k) - p^{m-r-1} k^m S_{m+1}^{(r+1)}(p h_k^*, k)
= k^m S_{m+1}^{(m-r)}(h, k) - p^{r-1} k^m S_{m+1}^{(m-r)}(h/p, k),
\]

\[
S_{p,a}(m; r, h_k^*, k) = k^m S_{m+1}^{(m+1-r)}(h, k) - p^{m-r} k^m S_{m+1}^{(m+1-r)}(h/p, k)
\]
and, for \(0 \leq j \leq r + 1 \),

\[
S_{p,a}(m; j, h_j^*, h) = h^m S_{m+1}^{(j)}(k_j^*, h) - p^{m-j} h^m S_{m+1}^{(j)}(p k_j^*, h)
= h^m S_{m+1}^{(m+1-j)}(k, h) - h^m S_{m+1}^{(m+1-j)}(k/h, p).
\]
Hence, in this case, the left hand side of (12) is equal to
Therefore we obtain by (2)

Theorem 2. If \((h, k)\) and \(p | h\), then

\[
(m + 1)S_{p, \alpha}(m; r + 1, h^*, k) + (m + 1)S_{p, \alpha}(m; r, h^*, k)
\]

\[
- \sum_{j=0}^{r+1} \binom{r+1}{j} (-k)^j S_{m+1-r}^{(m+1-r)}(h, h)
\]

\[
= \sum_{j=0}^{m+1-r} \binom{m+1-r}{j} (1 - p^{-j}) h^{m+1-r-j} B_{m+1-j}.
\]

For all integers \(m \geq r + 1\) such that \(m + 1 \equiv \alpha \pmod{e}\). The right hand side of the above is written formally as

\[
(m + 1)B'(Bh - B'k)^{m+1-r} - p^{m-r}B'(Bh/p - B'k)^{m+1-r}.
\]

For \(r = 0\), the formula (13) becomes

\[
(m + 1)S_{p, \alpha}(m; 1, h^*, k) + S_{p, \alpha}(m; 0, h^*, k)
\]

\[
- \sum_{j=0}^{m+1} \binom{m+1}{j} (1 - p^{-j}) h^{m+1-j} (-k)^j B_{m+1-j}.
\]

Thus we get

\[
hS_{p, \alpha}(m; 1, h^*, k) + kS_{p, \alpha}(m; 1, h^*, h)
\]

\[
= (1 - p^m) m B_{m+1} + \frac{1}{m+1} \{(Bh - B'k)^{m+1} - p^m(Bh - B'k/p)^{m+1}\},
\]

for all \(m \geq 1\) such that \(m + 1 \equiv \alpha \pmod{e}\). This is a \(p\)-adic interpolation of Apostol's reciprocity law in the case of \(p | hk\).

If \(r = 1\), we see from (13) that

\[
(m + 1)S_{p, \alpha}(m; 2, h^*, k) + 2S_{p, \alpha}(m; 1, h^*, k)
\]

\[
- \sum_{j=0}^{m} \binom{m}{j} (1 - p^{-j}) h^{m+1-j} k B_{m+1-j}.
\]

for \(m \geq 3, m + 1 \equiv \alpha \pmod{e}\). We exchange \(h\) and \(k\) in (15), then we get
Reciprocity formulas for p-adic Dedekind sums

(19) \[mh^2S_{p, m}(m; 2, k_h^*, h) + 2kS_{p, m}(m; 1, k_h^*, h) \]
\[= \sum_{j=0}^{m} \left(\frac{m}{j} \right)(1 - p^{j-1})k^{m+1-j}B_{m+1-j}B_j. \]

By subtracting, we obtain

(20) \[m(h^2S_{p, m}(m; 2, k_h^*, h) - k^2S_{p, m}(m; 2, k_h^*, h)) \]
\[= (m - 1)\{hS_{p, m}(m; 1, k_h^*, k) - kS_{p, m}(m; 1, k_h^*, h)\} \]
\[+ (B_h - B'h)(B_h + B'h)^m - p^n(B_h - B'h/p)(B_h + B'h/p)^m, \]
for $m \geq 3$, $m + 1 \equiv \alpha \pmod{p}$, where $p \nmid k$ and $(h, k) = 1$.

Finally, let $p \nmid hk$, $(h, k) = 1$. In this case we assume further that $p \equiv 1 \pmod{hk}$. Then we have

(21) \[hS_{p, m}(m; 1, k_h^*, k) + kS_{p, m}(m; 1, k_h^*, h) \]
\[= (1 - p^{m-1})\left(mB_{m+1} + \frac{1}{m + 1} \sum_{j=0}^{m-1} \left(\frac{m + 1}{j} \right)(-1)^jB_jB_{m+1-j}h^k \right), \]
for all positive integers m such that $m + 1 \equiv \alpha \pmod{e}$. This is a direct extension of the result of Rosen-Snyder [7].

References

Department of Mathematics
Faculty of Liberal Arts
Nagasaki University
Bunkyo-machi, Nagasaki 852
Japan