| Title | Über die Kaliber- und Zahlenverhältnisse der markhaltigen Nervenfasern in
	einigen Hirnnervenwurzeln.
Author(s)	Tate, Shohei; Otuka, Itaru; Isu, Senzabu
Citation	Acta Medica Nagasakiensia. 1939, 1, p.31-43
Issue Date	1939
URL	http://hdl.handle.net/10069/17383

长崎大学学術研究成果リポジトリ Nagasaki university’s Academic Output SITE

NAOSITE: Nagasaki University’s Academic Output SITE
Über die Kaliber- und Zahlenverhältnisse der markhaltigen Nervenfasern usw.

(Aus dem II. Anatomischen Institut der Medizinischen Fakultät zu Nagasaki—
Direktor: Prof. Dr. J. Takagi)

Über die Kaliber- und Zahlenverhältnisse der markhaltigen Nervenfasern in einigen Hirnnervenwurzeln.

Von

Dr. Shohei TATE-I, Dr. Itaru OTUKA und Dr. Senzabu ISI.

Mit 5 Textabbildungen

Eingegangen am 27. Sept. 1939.

Anatomische Verhältnisse der gebrauchten Werkstoffe.

Die Trochleariswurzel entspringt hinter der Eminentia quadrangularis vor dem lateralen Rand des Velum medullare anterius, geht um Crura cerebri zur Hirnbasis. Nach 6.5mm Verlauf gelangt der Nerv zur Fissura orbitalis superior.
N. abducens geht am hinteren Rand der Brücke vorn lateral des Pyramis aus, lateral vom Ggl. Gasseri vorbei, misst bis zum Durchtritt der Fissura orbit. sup. 3.8 mm.

N. facialis tritt mit N. intermedius an seiner lateralen Seite des letzteren begleitend hinter der hinteren lateralen Brückenecke heraus, tritt direkt in den Meatus acusticus internus ein. Von dem Wurzelaustritt bis zum Eintritt in den Canalis Fallopii misst er 3.5mm, bis zum Austritt aus dem Foramen stylomastoideum 12mm.

N. intermedius ist bis zum Ggl. geniculi isolierbar, wo der N. facialis seinen ersten Ast, N. petrosus superf. abgibt. N. stapedius und Chorda tympani stellen die weiteren Zweige im Canalis Fallopii dar.

Technik zur Herstellung der mikroskopischen Präparate sowie zur Mikrometrie an den Nervenfasern.

Die entnommenen Nervenstücke wurden an dem Glasstab gespannt befestigt und in Müllerischer Flüssigkeit 40-50 Tage bei Zimmertemperatur stehen gelas-

Abb. 1. a

Abb. 1.
Abb. 1. Querschnittfigur der untersuchten Nervenstücke.

a. Wurzel des N. oculomotorius,
b. R. superior n. oculomotorii,
c. R. inferior n. oculomotorii,
d. Trochleariswurzel,
e. Abducenswurzel,
f. Facialiswurzel,
g. Intermediuswurzel. Mit Abbeschem Zeichenapparat gezeichnet, Vergr. ca. 140X.
Über die Kaliber- und Zahlenverhältnisse der markhaltigen Nervenfasern usw.

Untersuchungsresultate.

Die Resultate der mikrometrischen Enumeration stellen wir unten in Tabellen, in Abbildungen und in Kurven auf.

Tabelle 1.

Die sämtlichen markhaltigen Nervenfasern von verschiedenem Kaliber.

<table>
<thead>
<tr>
<th>N.</th>
<th>Kal.</th>
<th>N. III</th>
<th>N. IV</th>
<th>N. VI</th>
<th>N. VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>unter 2 μ</td>
<td>76</td>
<td>258</td>
<td>334</td>
<td>339</td>
<td>+ 25</td>
</tr>
<tr>
<td>3 μ</td>
<td>375</td>
<td>1735</td>
<td>2110</td>
<td>1832</td>
<td>+ 278</td>
</tr>
<tr>
<td>4 μ</td>
<td>336</td>
<td>1441</td>
<td>1777</td>
<td>1659</td>
<td>+ 118</td>
</tr>
<tr>
<td>5 μ</td>
<td>207</td>
<td>731</td>
<td>938</td>
<td>939</td>
<td>= 11</td>
</tr>
<tr>
<td>6 μ</td>
<td>152</td>
<td>540</td>
<td>692</td>
<td>774</td>
<td>= 82</td>
</tr>
<tr>
<td>7 μ</td>
<td>112</td>
<td>429</td>
<td>541</td>
<td>659</td>
<td>= 118</td>
</tr>
<tr>
<td>8 μ</td>
<td>152</td>
<td>544</td>
<td>696</td>
<td>694</td>
<td>+ 2</td>
</tr>
<tr>
<td>9 μ</td>
<td>104</td>
<td>433</td>
<td>537</td>
<td>570</td>
<td>= 33</td>
</tr>
<tr>
<td>10 μ</td>
<td>103</td>
<td>429</td>
<td>532</td>
<td>540</td>
<td>= 8</td>
</tr>
<tr>
<td>11 μ</td>
<td>103</td>
<td>362</td>
<td>465</td>
<td>442</td>
<td>= 23</td>
</tr>
<tr>
<td>12 μ</td>
<td>99</td>
<td>325</td>
<td>424</td>
<td>347</td>
<td>= 77</td>
</tr>
<tr>
<td>13 μ</td>
<td>68</td>
<td>281</td>
<td>349</td>
<td>288</td>
<td>= 61</td>
</tr>
<tr>
<td>14 μ</td>
<td>53</td>
<td>176</td>
<td>229</td>
<td>198</td>
<td>= 31</td>
</tr>
<tr>
<td>15 μ</td>
<td>17</td>
<td>120</td>
<td>137</td>
<td>128</td>
<td>= 9</td>
</tr>
<tr>
<td>16 μ</td>
<td>9</td>
<td>44</td>
<td>53</td>
<td>45</td>
<td>= 8</td>
</tr>
<tr>
<td>17 μ</td>
<td>2</td>
<td>20</td>
<td>22</td>
<td>17</td>
<td>= 5</td>
</tr>
<tr>
<td>18 μ</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>= 3</td>
</tr>
<tr>
<td>19 μ</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>= 0</td>
</tr>
<tr>
<td>Total</td>
<td>1971</td>
<td>7875</td>
<td>9846</td>
<td>9468</td>
<td>+ 388</td>
</tr>
</tbody>
</table>

35
Tabelle 2.

Dieselben in Prozentsatz.

<table>
<thead>
<tr>
<th>Kal.</th>
<th>N. sup.</th>
<th>N. inf.</th>
<th>Summe</th>
<th>Wurzel</th>
<th>N. IV</th>
<th>N. VI</th>
<th>N. interm.</th>
<th>N. VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>unter 2μ</td>
<td>3.86</td>
<td>3.27</td>
<td>3.30</td>
<td>3.26</td>
<td>5.54</td>
<td>8.52</td>
<td>44.43</td>
<td>5.27</td>
</tr>
<tr>
<td>3μ</td>
<td>19.02</td>
<td>22.03</td>
<td>21.43</td>
<td>19.35</td>
<td>11.52</td>
<td>13.00</td>
<td>39.04</td>
<td>7.27</td>
</tr>
<tr>
<td>4μ</td>
<td>17.05</td>
<td>18.30</td>
<td>18.05</td>
<td>17.52</td>
<td>10.09</td>
<td>7.70</td>
<td>11.72</td>
<td>29.87</td>
</tr>
<tr>
<td>5μ</td>
<td>10.50</td>
<td>9.28</td>
<td>9.53</td>
<td>10.13</td>
<td>8.39</td>
<td>7.39</td>
<td>2.74</td>
<td>14.31</td>
</tr>
<tr>
<td>6μ</td>
<td>7.71</td>
<td>6.86</td>
<td>7.03</td>
<td>8.18</td>
<td>9.91</td>
<td>7.50</td>
<td>0.72</td>
<td>7.20</td>
</tr>
<tr>
<td>7μ</td>
<td>5.68</td>
<td>5.45</td>
<td>5.50</td>
<td>6.96</td>
<td>10.36</td>
<td>9.49</td>
<td>0.54</td>
<td>3.79</td>
</tr>
<tr>
<td>8μ</td>
<td>7.71</td>
<td>6.91</td>
<td>7.07</td>
<td>7.33</td>
<td>11.79</td>
<td>11.73</td>
<td>0.29</td>
<td>2.42</td>
</tr>
<tr>
<td>9μ</td>
<td>5.28</td>
<td>5.50</td>
<td>5.45</td>
<td>6.02</td>
<td>9.55</td>
<td>11.07</td>
<td>0.05</td>
<td>1.61</td>
</tr>
<tr>
<td>10μ</td>
<td>5.23</td>
<td>5.45</td>
<td>5.40</td>
<td>5.70</td>
<td>7.50</td>
<td>10.96</td>
<td>0.05</td>
<td>0.85</td>
</tr>
<tr>
<td>11μ</td>
<td>5.23</td>
<td>4.60</td>
<td>4.72</td>
<td>4.67</td>
<td>5.71</td>
<td>7.80</td>
<td>0</td>
<td>0.57</td>
</tr>
<tr>
<td>12μ</td>
<td>5.02</td>
<td>4.13</td>
<td>4.31</td>
<td>3.67</td>
<td>5.09</td>
<td>3.16</td>
<td>0</td>
<td>0.28</td>
</tr>
<tr>
<td>13μ</td>
<td>3.45</td>
<td>3.57</td>
<td>3.54</td>
<td>3.04</td>
<td>3.03</td>
<td>1.43</td>
<td>0</td>
<td>0.20</td>
</tr>
<tr>
<td>14μ</td>
<td>2.69</td>
<td>2.23</td>
<td>2.33</td>
<td>2.09</td>
<td>0.89</td>
<td>0.15</td>
<td>0</td>
<td>0.06</td>
</tr>
<tr>
<td>15μ</td>
<td>0.86</td>
<td>1.52</td>
<td>1.39</td>
<td>1.35</td>
<td>0.45</td>
<td>0.10</td>
<td>0</td>
<td>0.03</td>
</tr>
<tr>
<td>16μ</td>
<td>0.46</td>
<td>0.56</td>
<td>0.54</td>
<td>0.48</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>17μ</td>
<td>0.10</td>
<td>0.25</td>
<td>0.22</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18μ</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19μ</td>
<td>0.05</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Zusammenfassung.

Wie man an den Übersichtsbildern sieht, sind die Augenmuskelnerven im grossen und ganzen ziemlich stark in Kaliber. Unter ihnen enthält N. III. mehr die Fasern von schwachem Kaliber als N. IV. oder N. VI., welche im N. III. mehr bündelweise gruppiert vorkommen.

Der N. facialis stellt ein ganz anderes Aussehen dar. Dieser Muskelnerv besteht, einen Gegensatz zum Muskelast des Spinalnerven darbietend, meist aus feineren Faserarten, zwischen denen die dicken Fasern spärlich in Zahl ganz zerstreut auftreten.

Im N. intermedius kann man schon keine starkkalibrigen Fasern mehr
vorfinden. Er besteht aus lauter feinen Fasern.

Betrachtet man die Verhältnisse an den Tabellen sowie an den Verteilungskurven, so tritt der Unterschied noch augenfälliger auf.

Bei den Augenmuskelnerven weist die Kurve an drei Punkten mehr oder weniger ausgeprägte Gipfel auf, nämlich an 3μ, an 8μ und an 10-12μ. Indessen steigt beim N. III. nur der I. Gipfel (an 3μ) in die Höhe, die übrigen zwei sind nur angedeutet. Also stellt die Oculomotoriuswurzel im ganzen eine eingipflige Kurve dar, deren Gipfel nach links gedrängt ist. In seinem peripheren Teil steigen die übrigen zwei Gipfel deutlicher hinauf.

Abb. 2. Häufigkeitskurve der verschiedenen Faserkaliber im N. oculomotorius (in absoluter Zahl).

Abb. 3. Häufigkeitskurve der verschiedenen Faserkaliber im N. oculomotorius (prozentual).

Abb. 4. Häufigkeitskurve der verschiedenen Faserkaliber in der Wurzel des N. trochlearis und des N. abducens (prozentual).

Abb. 5. Häufigkeitskurve der verschiedenen Faserkaliber in der Wurzel des N. facialis und des N. intermedius (prozentual).

Besprechung mit Überblick der Literatur.

Nach unseren Untersuchungen stimmen die Zahlenwerte nicht mit denen von *Häggqvist* überein. Die einzelnen Faserdurchmesser können je nach der Untersuchungsmethode verschieden sein, aber auch in der Kurvenform konnten wir nicht seine Angaben annehmen, da unserer Untersuchung nach die Verteilungskurve der verschiedenen Kaliber auch bei den Augenmuskelnerven unverkennbar eine zweigipflige Form aufweist.

Diese dreigipflige Form der Verteilungskurve wurde neulich von *Sasaoka* bei den Muskelstäben des *N.V.* berichtet. Nach ihm sind beim *N. massetericus, Nn. temporales profundi* und *N. mylohyoideus* die Medianwerte an 4-5 μ, an 8 μ und an 12-13 μ immer drei in Zahl aufzählen. Er bemerkte ferner, dass man durch genauere Analyse bei den anderen cerebralen sowie auch spinalen Nerven die drei Medianwerte herausfinden könnte. Jedenfalls aber finden wir hier ganz augenfällig das Vorhandensein des dritten Gipfels.

Die der *Häggqvistschen* Angabe entsprechenden Verhältnisse, dass betreffs der Endigungsweise der Nervenfasern des *N. III.* einen Unterschied gegenüber *N. IV.* und *N. VI.* darstellt, sind hier in der Variationskurve der Kaliber schwer zu erkennen.

Betrachtet man ferner die Schwankungen im Verlauf des *N. III.* von der Wurzel bis zur Verästelungsstelle in zwei Äste, so ist die distale Vermehrung bei den Fasern von unter 4 μ und über 11 μ aufgewiesen. Die Fasern von 5-10 μ nehmen dagegen distalwärts ab. Merkwürdig ist doch, dass hier die dicksten
Faserarten auch die distale Zunahme zeigen. Es könnte dies, wie Tsez und Sherrington (1910) angaben, vom Einmengen der sensiblen Trigeminusfasern herstammen.

Betreffs der Beziehung mit Ggl. ciliare bemerkte Gaskell beim Hund und Carpenter beim Menschen, dass die Fasern von 3-5μ oder 6μ Kaliber über Radix brevis als präganglionäre Faser ins Ggl. eintreten. Ihnen gegenüber ist die Sache bei meiner Untersuchung nach dem Unterschied in den Faserkomponenten in den beiden Okulomotoriusästen (Tabelle 2) so aufzufassen, dass die Fasern von 3-4μ Kaliber die präganglionären Elemente repräsentieren, da diese Größen im R. inf. verhältnismäßig reichlicher vorkommt.

Tabelle 3.

Die sämtlichen markhaltigen Nervenfasern von verschiedenen Kaliber in größere Kalibergruppen eingeteilt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- 3μ</td>
<td>451</td>
<td>1993</td>
<td>2444</td>
<td>2141</td>
<td>191</td>
<td>422</td>
<td>3157</td>
<td>3952</td>
</tr>
<tr>
<td>3-5μ</td>
<td>543</td>
<td>2172</td>
<td>2715</td>
<td>2618</td>
<td>207</td>
<td>296</td>
<td>544</td>
<td>4499</td>
</tr>
<tr>
<td>5-10μ</td>
<td>623</td>
<td>2375</td>
<td>2998</td>
<td>3237</td>
<td>550</td>
<td>995</td>
<td>62</td>
<td>1616</td>
</tr>
<tr>
<td>10-15μ</td>
<td>340</td>
<td>1264</td>
<td>1604</td>
<td>1403</td>
<td>170</td>
<td>248</td>
<td>0</td>
<td>116</td>
</tr>
<tr>
<td>15-17μ</td>
<td>11</td>
<td>64</td>
<td>75</td>
<td>62</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17-20μ</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1971</td>
<td>7875</td>
<td>9846</td>
<td>9468</td>
<td>1120</td>
<td>1961</td>
<td>3763</td>
<td>10184</td>
</tr>
</tbody>
</table>

Dieselben in Prozentsatz.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- 3μ</td>
<td>22.88</td>
<td>25.31</td>
<td>24.82</td>
<td>22.61</td>
<td>17.05</td>
<td>21.52</td>
<td>83.90</td>
<td>38.81</td>
</tr>
<tr>
<td>3-5μ</td>
<td>27.55</td>
<td>27.58</td>
<td>27.57</td>
<td>27.65</td>
<td>18.48</td>
<td>15.09</td>
<td>14.46</td>
<td>44.18</td>
</tr>
<tr>
<td>5-10μ</td>
<td>31.61</td>
<td>30.16</td>
<td>30.45</td>
<td>34.19</td>
<td>49.10</td>
<td>50.74</td>
<td>1.64</td>
<td>15.86</td>
</tr>
<tr>
<td>10-15μ</td>
<td>17.25</td>
<td>16.05</td>
<td>16.29</td>
<td>14.83</td>
<td>15.19</td>
<td>12.65</td>
<td>0</td>
<td>1.14</td>
</tr>
<tr>
<td>15-17μ</td>
<td>0.56</td>
<td>0.81</td>
<td>0.76</td>
<td>0.65</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>17-20μ</td>
<td>0.15</td>
<td>0.09</td>
<td>0.11</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Über die Kaliber- und Zahlenverhältnisse der markhaltigen Nervenfasern usw. 41

Tabelle 4

Die größten Kaliber.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Material</th>
<th>N. III</th>
<th>N. IV</th>
<th>N. VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaskell (1889)</td>
<td>Hund</td>
<td>18 μ</td>
<td>18 μ</td>
<td>18 μ</td>
</tr>
<tr>
<td>Barrat (1901)</td>
<td>Hund</td>
<td>19 μ</td>
<td>19 μ</td>
<td>19 μ</td>
</tr>
<tr>
<td>Nakanishi (1923)</td>
<td>Katze</td>
<td>17 μ</td>
<td>17 μ</td>
<td>17 μ</td>
</tr>
<tr>
<td>Takahashi (1937)</td>
<td>Hund, Katze u. Kaninchen</td>
<td>20 μ</td>
<td>20 μ</td>
<td>20 μ</td>
</tr>
<tr>
<td>Skinho (1936)</td>
<td>Kröte</td>
<td>14 μ</td>
<td>14 μ</td>
<td>14 μ</td>
</tr>
<tr>
<td>Björkman u. Wohlfart (1936)</td>
<td>Mensch</td>
<td>16 μ</td>
<td>16 μ</td>
<td>16 μ</td>
</tr>
<tr>
<td>Högqvist (1938)</td>
<td>Affe</td>
<td>11 μ</td>
<td>11 μ</td>
<td></td>
</tr>
<tr>
<td>Wir selber</td>
<td>Katze</td>
<td>19 μ</td>
<td>16 μ</td>
<td>15 μ</td>
</tr>
</tbody>
</table>

Vergleicht man die Kaliberverhältnisse des N. III. mit denen der anderen Nervenwurzeln z.B. die des N.V. von Mihara, so fällt der Unterschied auch zumeist in dem reichlichen Vorkommen der feinen Fasern unter 3μ Kaliber (Tabelle 3).

Die Kaliberwechselnisse der Augenmuskelnerven nach einigen anderen Autoren stellen wir zum Vergleich mit unseren Untersuchungsresultaten oben in Tabellenform auf (Tabelle 4).

Die Angabe von Barrat, Koch und Nakanishi, dass beim N. III., N. IV. und N. VI. die Fasern von 3-5-6μ Kaliber ein Viertel der sämtlichen Fasern einnehmen, können wir nicht annehmen.

Betreffs N. intermedius glaubte Gaskell immer noch, dass die meisten Fasern autonom sind und zwischen ihnen nur eine geringe Zahl von dicken Fasern, wahrscheinlich von afferenter Natur, beigemengt sind.

Résumé.

1. Die untersuchten drei Augenmuskelnerven bestehen aus zwei oder drei Arten markhaltigen Fasern, deren Medianwerte an 3μ und an 8-10μ annehmbar sind. Der Unterschied zwischen ihnen liegt darin, dass beim N. III. die kleineren Faserarten in Zahl weit übertreffend sind, während sie bei den anderen zwei Nerven gegenüber der zweiten Faserarten in Menge gleichzusetzen sind.

2. Die größte Faser misst beim N. III. 19μ, beim N. IV. 16μ und beim N. VI. 15μ Durchmesser.

5. Eine Frage möchten die Verfasser hingestellt lassen, nämlich ob man nach dem Faserkaliber über die Beteiligung des Willens oder der Empfindung bei der Tätigkeit der betreffenden Nerven etwas aussagen kann, da im Facialis die sogenannten Fasern von der autonomen Grösse in zu grosser Menge vorkommen.

Schrifttum.