Abstract: One of the biological problems of hyperthermia in its application to cancer treatment is thermotolerance, or transient thermoresistance in cell killing. Thermotolerance is induced by fractionated heating, by step-up heating and even during successive heating. In clinical hyperthermia thermotolerance will reduce therapeutic effectiveness. Kinetics of thermotolerance induced in mouse FM3A cells by fractionated heating and by step-up heating was analyzed in this study. Cepharanthin, as a modifier of cell membrane, and cisplatin, an anti-tumor drug, were examined if these drugs suppress the thermotolerance. It was found that these drugs suppressed thermotolerance in processes of the development and the expression of the induction of thermotolerance. As these drugs effectively suppressed the induction of hyperthermia, they can be beneficially used in combination with hyperthermia to improve therapeutic results.

Introduction

Hyperthermia has been examined experimentally and applied clinically as a new modality of cancer treatment. Hyperthermia has advantageous characteristics which is not known in conventional cancer treatments. Some cancer cells are more thermosensitive than normal cells, because of their inherent thermosensitiveness and of their conditional alteration of thermosensitiveness by low pH in circumstances of cancer cells. As temperature of cancer tissues is more easily elevated than that of normal tissues because of their deficient blood flow, the normal tissues will be protected from thermal damage. Hyperthermia is also applied in combination with chemotherapy and radiotherapy for thermo-enhancement of these modalities. The problem which should be overcome in hyperthermia is thermotolerance which will decrease therapeutic effectiveness. Thermotolerance is experimentally induced by fractionated heating, step-up heating and during successive heating. The thermotolerance would be also induced during a hyperthermic treatment or during a course of the treatments. In the present study, the kinetics of induced thermotolerance was analyzed, and drugs were applied in combination with hyperthermia to suppress thermotolerance.

Materials and Methods

The cells used were FM3A cells which were derived from a spontaneous mammary carcinoma in C3H mouse and which were established as a cell line cultured in suspension. Cells were cultured in Eagle's minimum essential medium (Nissui pharmaceutical Co., Tokyo) supplemented with 60μg/ml kanamycin and with 5% bovine calf serum (Hyclone Laboratories, Inc., Logan) and 5% fetal bovine serum (Hyclone Laboratories, Inc., Logan). Cells in test tubes were immersed in a water bath for the hyperthermic treatment at temperatures controlled within 0.1 °C. Time courses for the induction of thermotolerance by fractionated heating and step-up heating are illustrated in Fig. 1. For fractionated heating (Fig. 1-a), the first heating was performed at 44 °C for 15 minutes (period-A) followed by the interval for varied time from 0 to 6 hours at 37 °C (period-B). And cells were challenged with the second heating at 44 °C for the assay of the surviving fraction (period-C). For step-up heating (Fig. 1-b), the first heating,
or low heating, was performed at 42°C for varied time from 0 to 2 hours (period-A), and followed by the second heating, or high heating, at 44°C for the assay of the surviving fraction (period-B). The surviving fraction was determined with colony formed by culturing cells in 0.3% soft agar.

Drugs used were 10μg/ml of cepharanthin (Kaken Seiyaku Co., Tokyo) and 5μg/ml of cisplatin (Nippon Kayaku Co., Tokyo). All experiments were repeated at least three times and data shown in Figures are averages from these experiments.

Results

Fig. 2 shows survival curves of FM3A cells heated at temperatures from 41 to 46°C. The surviving fraction decreased with elevation of the temperature. Fig. 3 shows survival curves when cells were heated with the presence of drugs. Cepharanthin (CPR) showed a small sensitizing effect (Fig. 3-a), and cisplatin (CDDP) showed a marked cell killing at 37°C and sensitizing effect in elevated temperatures (Fig. 3-b). The sensitizing effects were compared using T_T values defined by the time reducing the surviving fraction to 37% on the exponentially decreasing part of the survival curves (Table I).

Survival curves of cells for fractionated heating (FH) were shown in Fig. 4. The first heating was at 44°C for 15 minutes and the period of the interval at 37°C were 0, 2, 4

![Fig. 2. Survival curves of FM3A cells treated at various temperatures from 41 to 46°C.](image)

![Fig. 3. Survival curves of cells treated at various temperatures with (a) cepharanthin, CPR, and (b) cisplatin, CDDP.](image)
Table 1. \(T_\alpha \) values for different temperatures.

<table>
<thead>
<tr>
<th></th>
<th>37°C</th>
<th>41°C</th>
<th>42°C</th>
<th>43°C</th>
<th>44°C</th>
<th>45°C</th>
<th>46°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>14,122</td>
<td>3,790</td>
<td>61.7</td>
<td>21.7</td>
<td>7.96</td>
<td>2.72</td>
<td>1.31</td>
</tr>
<tr>
<td>CPR</td>
<td>494</td>
<td>396</td>
<td>55.1</td>
<td>11.8</td>
<td>6.73</td>
<td>2.99</td>
<td>1.56</td>
</tr>
<tr>
<td>CDDP</td>
<td>66.2</td>
<td>27.5</td>
<td>13.3</td>
<td>5.05</td>
<td>4.84</td>
<td>2.51</td>
<td>1.72</td>
</tr>
</tbody>
</table>

Unit: minutes

and 6 hours. The increase in the surviving fraction with the period of the interval means the induction of thermotolerance. When cepharanthine (CPR) was added at the first heating and presented until the second heating, or the period-A, B and C, the surviving fraction decreased, indicating the suppression of thermotolerance (Fig. 5). The effects of cepharanthine added at different periods are shown in Fig. 6 for the period-A and the period-B, and in Fig. 7 for the period-C and the period-B and C. \(T_\alpha \) values obtained from Figs. 6 and 7 are shown in Table 2. The suppression of thermotolerance was maximum when cepharanthine was present from the beginning to the end of the treatment, or the period-A, B and C. The thermotolerance ratios, TTR, under the conditions with or without cepharanthine were compared in Fig. 8. TTR is the ratio of a \(T_\alpha \) value for the period of the interval indicated in Fig. 8 to that for the interval 0 hour. TTR increased with the period of the interval in the fractionated heating. When cepharanthine was added at the period-A, there was no effect. For the period-B and the period-C, thermotolerance was suppressed by the same extent. When added during the period-B and C, the suppression were enhanced. When cepharanthine was further presented during the period-A in addition to the period-B and C, or the period-A, B and C, the suppression became the maximum. TTR when cepharanthine was added during the period-A, B and C was reduced to 0.22 of the control value at the interval of 6 hours.

The effect of cisplatin (CDDP) was examined for the induction of thermotolerance in fractionated heating. As cisplatin was more toxic than cepharanthine, it was added only at the period-C. The surviving fraction at different
Fig. 6. Suppression by cepharanthin, CPR, of thermotolerance induced by fractionated heating. Cepharanthin was added during (a) the period-A and (b) the period-B.

Fig. 7. Suppression by cepharanthin, CPR, of thermotolerance induced by fractionated heating. Cepharanthin was added during (a) the period-C and (b) the period-B and C.
Table 2. Tₜ values for different periods of interval in fractionated heating.

<table>
<thead>
<tr>
<th></th>
<th>0 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>6 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.2</td>
<td>31.6</td>
<td>65.6</td>
<td>90.7</td>
</tr>
<tr>
<td>CPR-A, B, C</td>
<td>6.58</td>
<td>8.60</td>
<td>10.9</td>
<td>12.9</td>
</tr>
<tr>
<td>-A</td>
<td>8.74</td>
<td>24.7</td>
<td>55.3</td>
<td>71.3</td>
</tr>
<tr>
<td>-B</td>
<td>8.51</td>
<td>23.0</td>
<td>42.1</td>
<td>49.3</td>
</tr>
<tr>
<td>-C</td>
<td>7.28</td>
<td>15.4</td>
<td>14.8</td>
<td>20.1</td>
</tr>
<tr>
<td>-B, C</td>
<td>7.10</td>
<td>15.4</td>
<td>14.8</td>
<td>20.1</td>
</tr>
<tr>
<td>CDDP-A, B</td>
<td>10.1</td>
<td>12.6</td>
<td>26.7</td>
<td>39.6</td>
</tr>
<tr>
<td>-A</td>
<td>7.96</td>
<td>12.1</td>
<td>26.7</td>
<td>39.6</td>
</tr>
<tr>
<td>-B</td>
<td>6.95</td>
<td>10.2</td>
<td>12.6</td>
<td>14.8</td>
</tr>
<tr>
<td>-C</td>
<td>5.69</td>
<td>8.75</td>
<td>9.71</td>
<td>10.5</td>
</tr>
<tr>
<td>-B</td>
<td>6.54</td>
<td>9.53</td>
<td>10.5</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Unit: minutes

Fig. 8. Change in thermotolerance ratio, TTR, with the period of the interval at 37°C, and suppression of thermotolerance by addition of cefarantin at different periods.

Fig. 9. Suppression by cisplatin, CDDP, of thermotolerance induced by fractionated heating. Cisplatin was added during the period-C.

Table 3. Tₜ values for different periods of low heating in step-up heating.

<table>
<thead>
<tr>
<th></th>
<th>0 hr</th>
<th>1 hr</th>
<th>1.5 hr</th>
<th>2 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.96</td>
<td>12.1</td>
<td>26.7</td>
<td>39.6</td>
</tr>
<tr>
<td>CPR-A, B</td>
<td>6.95</td>
<td>10.2</td>
<td>12.6</td>
<td>14.8</td>
</tr>
<tr>
<td>-B</td>
<td>6.95</td>
<td>9.50</td>
<td>13.4</td>
<td>15.1</td>
</tr>
<tr>
<td>CDDP-A, B</td>
<td>5.69</td>
<td>8.75</td>
<td>9.71</td>
<td>10.5</td>
</tr>
<tr>
<td>-B</td>
<td>6.54</td>
<td>9.53</td>
<td>10.5</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Unit: minutes

suppression of thermotolerance by cefarantin. Their Tₜ values were shown in Table 3. TTR was calculated as a ratio of a Tₜ value for the corresponding period of the low heating to that for the period 0 hour, and is shown in Fig. 13. TTR of control increased slowly until 1 hour of the low heating, and then increased rapidly. The suppression of thermotolerance was marked after 1.5 hours of the low heating with the presence of cefarantin. There was no difference in the suppression when cefarantin was added at the period-A and B or the period-B, indicating that cefarantin was effective when added at the period-B but not effective at the period-A. TTR was reduced to 0.44 of the control value when cefarantin was added for 2 hours of low heating.

The effect of cisplatin on the suppression of thermotol-
Fig. 10. Suppression of thermotolerance ratio, TTR, in fractionated heating by addition of cisplatin at the period-C.

Fig. 11. Induction of thermotolerance by step-up heating, SUH. The low heating was at 42°C for various period from 0 to 2 hours. The survival curves were obtained at the high heating at 44°C.

Fig. 12. Suppression by cepharanthin, CPR, of thermotolerance induced by step-up heating. Cepharanthin was added during (a) the period-A and B and (b) the period-B.
Thermotolerance and Its Suppression by Drugs

Discussion

By elevating temperature of cancer cells above 42 °C, cells receive lethal damages and eventually will die. The lethal effect becomes significant with elevation of the temperatures. This thermal killing of cells is applied for cancer treatment as hyperthermia. In the application of hyperthermia to clinical treatments, following points should be established: (1) Instruments for heating cancer tissues selectively at a planned temperature higher than 42 °C. (2) Methods noninvasively measuring temperatures of the cancer tissues during treatments. (3) Biological modification to thermosensitize cancer cells. Many studies have been performed for the establishment of above points, but further efforts should be taken.

In the induction of thermotolerance three processes would exist: heat stress, development and expression. The heat stress might be occurred at temperatures above 42 °C. The development might proceed at 37°C, and also at 42°C. The expression is observed at the time to assay the thermal cell killing. In this study, the temperatures for the heat
stress, the development and the expression were 44, 37 and
44 °C for the fractionated heating, respectively, and 42, 42
and 44 °C for the step-up heating, respectively. The amount
of induced thermotolerance was increased with the periods
of the heat stress and the development (Figs. 4 and 11).

Cepharanthin was used for the suppression of thermotol-
erance. Cepharanthin is an alkaloid acting as a modifier of
cell membrane and protect from hemolysis by snake ven-
om.3,36) Cepharanthin has small toxicity at 37 °C (Fig. 3-a),
but suppressed thermotolerance in fractionated heating
when added at the steps of the development and the expres-
sion (the period-B and the period-C, Fig. 8), but not in the
process of the heat stress (the period-A, Fig. 8). In step-up
heating cepharanthin suppressed thermotolerance at the
step of the expression, not at the step of heat stress and the
development (Fig. 13). As cepharanthin is toxic at 37 °C , it
can be effectively applied to hyperthermia for the suppres-
sion of thermotolerance.

Cisplatin was also used to examine the suppression of
thermotolerance. Cisplatin has been used clinically as an
anticancer drug and also can be used in combination with
hyperthermia.12,16) As cisplatin is highly toxic to cells, it was
added only at the period-C in fractionated heating which is
the process of the expression, and showed marked suppres-
sion of thermotolerance (Fig. 10). In step-up heating cisplatin
acted as cepharanthin did (Fig. 13). As cisplatin has been
used in chemotherapy, it also can be combined with
hyperthermia for the suppression of thermotolerance.

The induction of thermotolerance is associated with the
heat shock proteins.34,40) It has been reported that several
heat shock proteins were observed during the induction of
thermotolerance. However, the mechanism of the induction
of thermotolerance is not well analyzed in relation to the
heat shock proteins. The mechanism of the suppression of
thermotolerance by cepharanthin and cisplatin is not well
explained and needs further study, though some rela-
tionship might exist between the suppression of thermotol-
erance and heat shock protein (s).

Acknowledgment

The author thanks Professor Y. Okumura for his encour-
agement through this study. This study was supported in
part by a Grant-in-Aid for Cancer Research from the

References

1) Hall, E. J.: Hyperthermia. [In] Radiobiology for the Radiologist. 3rd
2) Watanabe, M., Suzuki, K and Watanabe, K: Differential heat sen-
sitivity of normal and transformed Syrian golden hamster embryo cells
3) Ovegard, J. and Bichel, P.: The influence of hypoxia and acidity on
the hyperthermic response of malignant cells in vitro, Radiol.
4) Gerweck, L. E.: Modification of cells lethality at elevated temper-
6) Hahn, G. M., Braun, J. and Har-Kedar, J: Thermochemistry:
Synergism between hyperthermia (42-43 °C) and Adriamycin (or
7) Magin, R. L., Sikic, B. I. and Cysik, R. L.: Enhancement of bleo-
mycin activity against Lewis lung tumors in mice by local hyper-
9) Bull, J. M. C.: An update on the anticancer effects of a combination of
chemotherapy and hyperthermia. Cancer Res. (suppl.)
44:4853s-4856s, 1984.
10) Kano, E., Furuta, M., Nitta, K., Ohtsubo, T., Ticha, P., Tsuji, K.,
Tsubouchi, S., Kondo, T. and Furibhat, S.: Effect of anti-tumor drugs
on thermotolerance development and thermosensitivity of thermotol-
erance cells. [In] Current Research in Hyperthermia Oncology. Ed. by
11) Cohen, J. D. and Robins, H.I.: Thermal enhancement of tetraplatin
and carboplatin in human leukemia cells. Int. J. Hyperthermia.
12) Okumura, Y., Komatsu, K. and Kodama, S.: Hyperthermia in combi-
nation with drugs. [In] Current Research in Hyperthermia Oncology.
13) Okumura, Y., Komatsu, K. and Kodama, S.: Lethal and sublethal

Fig. 15. Suppression of thermotolerance Ratio, TTR, in step-up
heating by addition of cisplatin.

