<table>
<thead>
<tr>
<th>Title</th>
<th>Post-Motion Positivity Potentials Accompanying Voluntary, Self-Paced Movements in Man</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nishihira, Yoshiaki; Araki, Hideo; Ishihara, Akihiko; Yagi, Yasuo</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学医療技術短期大学部紀要 = Bulletin of the School of Allied Medical Sciences, Nagasaki University. 1989, 2, p.37-46</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989-03-31</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/18086</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Post-Motion Positivity Potentials Accompanying Voluntary, Self-Paced Movements in Man

Yoshiaki NISHIHIRA¹, Hideo ARAKI², Akihiko ISIHARA²
and Yasuo YAGI³

Abstract In this study, we examined the scalp distribution of postmotion positivity potentials beginning at about 150 msec. and 320 msec. after a voluntary, self-paced movement as well as their functional significance with respect to motor control.

The present results showed that the P2 potentials were preponderant over the central area contralateral to the moving limb in both the right and left finger movement, with the midline-central area showing the maximal amplitude. Moreover, with the ankle movement, the P2 potentials were preponderant over the central area ipsilateral to the moving limb. In addition, the present experiments showed that the P3 potentials were larger over the midline-parietal area than over the central area. With the amplitudes of P2 and P3 potentials, the present results showed that the values of the P2 and P3 potentials were larger for plantar flexion of ankle than for finger movements. Therefore, it may be concluded that the P2, in part, reflects a central mechanism and the P3 potential reflects the afferent feedback which signals the information of limb position.

Key words: Post-motion positivity potential, movement-associated cerebral potentials, EMG, voluntary movement

Introduction

Kornhuber and Deecke (1965) first recorded four movement-associated cortical potentials from the human scalp, both preceding and accompanying

1. Department of General Education, The School Allied Medical Sciences, Nagasaki University, Nagasaki.
2. College of General Education, University of Tokushima, Tokushima.
a voluntary movement: (1) Readiness Potential (RP), (2) Pre-Motion Positivity Potential (PMP), (3) Motor Potential (MP), and (4) Complex positive-negative potentials following movement onset. The RP starts as early as 0.8-1.5 sec. prior to the onset of movement and has a bihemispherical distribution in all movements, even in unilateral ones. In the first half of the foreperiod the RP is bilaterally symmetrical. However, with finger movements, the precentral RP develops a contralateral preponderance of negativity halfway through its course. Therefore, RP is considered to be associated with the preparation and initiation of voluntary movements. It is reported3,4,5 that the PMP starting at about 80-90 msec. prior to the first EMG activity is usually seen over the fronto-central midline as well as in the parietal and ipsilateral precentral leads. However, the functional significance of motor control in PMP remains unclear. The MP starting at about 50-60 msec. prior to the first EMG activity is preponderant over the contralateral motor cortex and MP is considered to be associated with the initiation of voluntary movements. Thus, several cerebral potentials prior to voluntary movements have been extensively examined by many researchers.

However, many points remain unclear with respect to the complex positive-negative potentials following movement onset. In this study, we examined the scalp distribution of two post-motion positivity potentials starting at about 150 and 320 msec. following the onset of movement as well as their functional significance with respect to motor control.

Material and Methods

Subjects: The subjects were 5 young male students, ranging in age from 19-20 years old. They laid comfortably on a bed in a sound-damped, electrically shielded room with their eyes fixed upon a red lamp which was placed at a distance of 1.5 m.

Movement tasks: Each subject was instructed to perform unilateral self-paced movements at his own volition. Each session consisted of four movements, the sequence of which was balanced between experiments: (1) plantar flexion of the right ankle, (2) plantar flexion of the left ankle, (3) right finger movement, (4) left finger movement. The subjects were instructed to fix their sight on a designated point and avoid blinking or other contaminating movements during execution of the movement tasks. Intertrial intervals were not shorter than 10 sec.

Recording and analysis: The EEG was recorded monopolarly from the scalp using an EEG with a spiral electrode. The electrodes were placed at C3, CZ, C4 and PZ, according to the 10-20 electrode system, with reference to
commonly linked ears. Electrodes above and below the left eye were used for
recording vertical eye movements and blink potentials. The time constant used
for measuring movement-associated cerebral potentials was 3 sec. The EEG
signals were amplified by EEG-amplifiers (-3DB point at 30 Hz). The rectified
EMG bursts which were bipolarly recorded from the triceps durae muscle of
the right leg, from the flexor hallucis brevis muscle and the superficial flexor
digitorum communis muscle using a silver-cup electrode with a time constant
of 0.01 sec., served as the trigger. The EEG, EOG and rectified EMG bursts,
which served as trigger pulse, were recorded on magnetic tape. After the
experiment, the data stored on the tape were fed into the averaging computer
and were averaged (ATAC 250 averaging computer) in reverse or normal time
and recorded on the X-Y recorder. In this study, the onset times of post-
motion positivity potentials were measured from the first EMG activity to
each of the positive deflections. The amplitudes of the post-motion positivity
potentials were obtained by measuring the differences in amplitude between
each component and the component of opposite polarity which was immediately
following. It is seen that the ratio of movement-associated cerebral potentials
to background potential is improved by increasing the number of samples,
but the contours of movement-associated cerebral potentials did not seem to
differ substantially. Accordingly, we usually took 70 samples from each of the
subjects for purposes of averaging in the case of the movement-associated
cerebral potentials measurement. Analysis time for the movement-associated
cerebral potentials on the averaging computer was 2.5 sec. All segments with
artifacts were excluded from the data. Fig.1. shows a typical example of wave
form for the movement-associated cerebral potentials and the measurement
criterion.

Statistical analysis: A paired t test was used for statistical evaluation.

Results

The post-motion positivity potential (P2 potential) starting at about
150 msec. following the first EMG activity.

Fig.1.2. shows the scalp distribution of P2 potential following the first
EMG activity. As shown in Fig.1., with the right finger movements, the P2
potentials were clearly larger over the midline-central area (CZ) and secondly
over the left central area (C3) than over the right central area (C4) and
midlineparietal area (PZ) (CZ>C3, not sig., CZ>C4, t(4)=11.24, P<0.01, CZ
>PZ, t(4)=7.66, p<0.01, C3>C4, t(4)=8.93, p<0.01, C3>PZ, t(4)=9.71, P<0.01,
C4>PZ, t(4)=2.78, P<0.05). Contrary to the finger movements, the P2
potentials of right ankle movement were larger over the right central area
Fig. 1. A typical example in wave form of Movement-Associated Cerebral Potentials. The post-motion positivity potentials are measured from the first EMG activity to each of the positive deflections.

Fig. 2. The P2 potential after a right voluntary, self-paced movement.
Post-Motion Positivity Potentials

(C4) and midline-central area (CZ) than over the left central area (C3) and midline-parietal area (PZ) (C4>CZ, not sig., C4>C3, t(4)=2.83, P<0.05, C4>PZ, t(4)=6.63, P<0.01, CZ>C3, t(4)=2.80, P<0.05, CZ>PZ, t(4)=6.62, P<0.01, C3>PZ, t(4)=4.47, P<0.05). As for left finger movements shown in Fig.2, the P2 potentials were significantly larger over the right central area (C3) and midline-central area (CZ) than over the left central area (C3) and midline-parietal area (PZ) (C4>C3, t(4)=10.43, P<0.01, C4>CZ, not sig., C4>PZ, t(4)=11.82, P<0.01, CZ>PZ, t(4)=4.72, P<0.01).

Comparing the values of P2 potentials during various movement tasks, the P2 potentials were significantly larger for plantar flexion of the ankle than for finger movements (ankle movement>finger movement, t(9)=6.06, P<0.01 for right movement, t(9)=3.79, P<0.01 for left movement, respectively).

The post-motion positivity potential (P3 potential) beginning at about 320 msec. following the first EMG activity.

Fig.3 shows the scalp distribution of P3 potential after the first EMG activity. As shown in Fig.3, the P3 potentials were larger over the midline-parietal area (PZ) than over the central areas in both the right finger and ankle movements (PZ>C3, t(4)=3.46, P<0.05, PZ>CZ, t(4)=3.18, P<0.05, PZ>C4, t(4)=3.51, P<0.05 for finger movement, PZ>C3, t(4)=4.55, P<0.05, PZ>CZ, t(4)=4.17, P<0.05, PZ>C4, t(4)=3.23, P<0.05 for ankle movement, respectively). As shown in Fig.4, the P3 potential were larger over the midline-parietal area than over the central areas in both the left finger and ankle movements (PZ>

![Fig. 3. The P2 potential after a left voluntary, self-paced movement.](image-url)
Fig. 4. The P3 potential after a right voluntary, self-paced movement.

Fig. 5. The P3 potential after a left voluntary, self-paced movement.

C3, t(4)=6.26, P<0.01, PZ>CZ, t(4)=6.34, P<0.01, PZ>CZ, t(4)=6.24, P<0.01 for finger movement, PZ>C3, t(4)=7.30, P<0.01, PZ>CZ, t(4)=6.67, P<0.01, PZ>C4, t(4)=5.92, P<0.01 for ankle movement, respectively). A significant dif-
Post-Motion Positivity Potentials

ference was not found in the central areas for both the finger and ankle movements. Comparing the values of P3 potential during various movement tasks, the P3 potentials were larger for plantar flexion of the ankle than for finger movements (ankle movement > finger movements, t(9) = 3.63, P < 0.01, for the right movement, ankle movement > finger movement, t(9) = 7.06, P < 0.01 for the left movement).

Discussion

Many points remain unclear with respect to post-motion positivity potentials following a voluntary, self-paced movement. In this study, we examined the scalp distribution of post-motion positivity potential beginning at about 150 msec. and 320 msec. after a voluntary, self-paced movement onset as well as their functional significance with respect to motor control. The present experiments showed that the P2 potentials were preponderant over the central area contralateral to the moving limb in both the right and left finger movements, with the midline-central area showing the maximal amplitude. However, with respect to the ankle movements, the P2 potentials were preponderant over the central area ipsilateral to the moving limb. These results were consistent with those of the RP which begin at about 0.8 - 1.5 sec. prior to a voluntary movement. Boschert et al. (1983) reported that the P2 component is particularly pronounced at C3 and P3 during right finger movement and at C4 and P4 during left finger movement. However, from the present results we noted that the P2 potentials were more preponderant over the central area than over the midline-parietal area. Deecke et al. (1976) proposed that the post-motor potential course reflects reafferent input from kinesthetic receptors evoked by the movement itself, because the potential after movement onset shows the same sequence of positive and negative components. Contrary to the studies in monkeys of Vaughan et al. (1970), it was reported that the positive component after a movement did not disappear following bilateral rhizotomy C2-C4. Arezzo et al. (1977) also reported that units which begin to discharge in approximate synchrony with the onset of movement located on both sides of the central sulcus as well as their activity are concurrent with the P2 component. Accordingly, from the scalp distribution of P2 component and the studies in monkeys of Vaughan et al. (1970) and Arezzo et al. (1977), it may be concluded that the P2 component, in part, reflects a central mechanism. As has already been described, with ankle movements, the P2 components were preponderant over the hemisphere ipsi-
lateral to the moving limb. These results were consistent with those in which RP begins at about 0.8-1.5 sec. prior to a voluntary movement. Therefore, the reason for these results may be that the distribution difference between the RP for foot and finger movements was not due to a control difference of cerebral hemisphere between foot and finger responses, but to the difference of the temporal ordering of the principal generators which might contribute to the RP, as previously reported. Furthermore, the present results showed that the P3 potentials were larger over the midline-parietal area than over the central area. Arezzo et al.\(^1\,2\) (1977) also reported that the long latency MUA following the EMG is recorded exclusively in the post central gyrus and is associated with the P3 component. In addition, Boschert et al.\(^3\) (1983) also confirmed that the post-motor component is terminated by a pronounced late positive component. This late positive component shares the latency of P300 component of a sensory evoked potential. Other investigators\(^1\,2\) have also reported that somesthetic stimulation evokes unit activity within area 5 at comparable latencies. Therefore, it may be concluded that the P3 component reflects afferent feedback signalling information on the limb position. Moreover, the present experiments showed that the values of the P2 and P3 potentials were significantly larger for plantar flexion of the ankle than for finger movements. A possible explanation for these results could be that it takes more cortical monitoring to perform plantar flexion for the ankle movement than for the finger movement, for man is more skilled with his fingers than with his feet.

References

Post-Motion Positivity Potentials

229, 1979.

(1988年12月26日受理)
自発動作に伴う運動後陽性電位

西平 賀昭¹ 荒木 秀夫² 石原 昭彦² 八木 康夫³

1 長崎大学医療技術短期大学部一般教育
2 徳島大学教養部
3 西南女学院短期大学

要 旨　著者らは脳電位、筋電位を用いて自発動作後約150msec と320msec に開
始する運動後陽性電位の頭皮上分布とそれらの電位の運動制御上の意義を検討するこ
とに本研究の目的をおいた。その結果、運動後陽性電位の一つである P2 電位は、指
の動作においては左右の動作とも動作肢と反対側の中心頭静で優位を示し、かつ導出
部位 CZ の中心頭静において最大の振幅を示した。しかし、足関節屈曲動作における
P2 電位は同側の中心頭静上で優位を示した。さらに、運動後320msec に開始する P
3 電位は導出部位 PZ 上で優位を示した。また指と足関節動作間を比べてみると、P
2, P3 電位とも足関節動作において大きな振幅を示した。それゆえ、P2 電位の出
現には中枢機構の一部が関与し、P3 電位の出現には末梢からのフィードバック機構
が関与していることが推察される。　　長大医短紀要 2: 37-46，1988