<table>
<thead>
<tr>
<th>タイトル</th>
<th>西九州周辺海域における有害渦鞭毛藻 Cochlodinium polykrikoides の季節的消長（2006年4月～2007年4月）</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>水野 あかね 川見 寿枝 山砥 稔文 岩潟 光儀 松岡 敷充</td>
</tr>
<tr>
<td>発行機関</td>
<td>長崎大学水産学部研究報告</td>
</tr>
<tr>
<td>発行年</td>
<td>2008</td>
</tr>
<tr>
<td>発行号</td>
<td>v.89, pp.1-6</td>
</tr>
<tr>
<td>リンク</td>
<td>http://hdl.handle.net/10069/18785</td>
</tr>
<tr>
<td>ライセンス</td>
<td>NAOSITE: Nagasaki University’s Academic Output SITE</td>
</tr>
</tbody>
</table>
Seasonal occurrence of a harmful dinoflagellate *Cocchidinium polykrikoides* reported at coastal areas in western Kyushu.

Key Words: *Cocchidinium polykrikoides*, *Cocchidinium fulvescens*, dinoflagellate, harmful algal blooms, 赤潮, red tide.
方 法

Cochlodiniun polykrikoidesの出現調査は2006年4月から2007年4月の13ヶ月間にわたり、九州沿岸および東シナ海沖合の海域で行った。調査は対馬（浅茅湾）、若竹（龍ノ本湾）、平戸（薄香湾）、長府（大村湾）、上五島（朝倉湾）、青方湾、新長崎漁港、新長崎漁港沖、五島、吉野川、南方沖、天草、男女島（西沖）、対馬海峡西水道、満州島、五島列島、若竹水道、平戸沖、鹿児島（鶴江湾）、薩摩半島、桑南諸島の18海域を対象として計144回実施した（Fig. 1, Table 1, Table 1）。沿岸域の多くの調査点では月に一度の試料採取を行ったが、沖合での調査は儒航の都合上不定期となり、調査回数は海域ごとに1回から20回と異なった（Table 1, Table 1）。

プランクトン観察には表層海水試料を用いた。沿岸域では1・5 Lの植物プランクトンが少ない沖合では10・20 Lの海水を採取した。採取した海水は研究室で目合い250 μmのプランクトンネットを用いて20 Lに通過した後に試料の全量を検査したC. polykrikoidesの遊泳細胞を探索した。遊泳細胞の出現を確認した際には細胞数の計数を行った。これに併せプランクトンネット（目合い20μm）で表層から約10m鉛直曳きを行い、試料を採取した。また定量的処理をした海水試料中に本種が確認されない場合には、現場プランクトンネット試料を検査し、細胞の有無を調査した。検査にはノーススクリーン型微分造形装置を備えた倒立顕微鏡（Olympus IX70）を用いC. polykrikoidesの遊泳細胞をデジタルカメラ（Olympus Camedia C-5060）で撮影した。また採水海域では水温・塩分計（JWTT 社製 Cond330i）とLF330iを用いて表層水温と塩分を測定した。

結果と考察

Cochlodiniun polykrikoidesの出現海域

Cochlodiniun polykrikoidesは2006年4月から2007年4月の調査期間中に浅茅湾、薄香湾、朝倉湾、青方湾、大村湾、新長崎漁港、新長崎漁港沖、五島、吉野川、南方沖、天草の計10海域で確認された（Table 2, Table 2）。冲合では5ヶ月前から8月にかけて出現した。平戸・薄香湾では調査期間中に継続して出現し、薄香湾以外の沿岸域では2006年6月から2007年1月に出現した。また本種は八代海で2006年6月下旬と10月中旬に浅茅湾で7月下旬に薄香湾で10月下旬に観察を停止した。

Cochlodiniun polykrikoidesの形態的特徴と類似種との識別

Cochlodiniun polykrikoidesは1961年にカリブ海・ブラピルトロコ産試料を用いて局記載されたもの。日本沿岸域に出現する本種はC. polykrikoides sp. 78年八代海産と仮称されたが、形態学的検討の後にC. polykrikoidesと同定されるようになった。しかしC. polykrikoides sp. 78年八代海産はブラピルトロコ産（細胞長30μm以下）よりも小型（細胞長30・40μm）で細胞幅20・25μmの（Fig. 2, Fig. 2）またE西九州沿岸域には本種に形態が類似するが、やや小型の形態群が認められている。この形態群はCochlodiniun sp. 竪沙型と呼ばれ以下に定めた5つの特徴をもとれている。51節は細胞はドーム状・下向きに細胞径を細く切り込み方向によっては2つのごとのように見える。2）細胞は細く、細胞の端より1/4付近から始まり、1/2細胞の細胞径を約1.75倍にして細胞端より1/5付近で細胞径は1/5まで細胞径を細くする。細胞の側面に細胞径はさらに細く、細胞の長さはやや短くなる。4）細胞幅17・18μm。2）細胞連鎖まででそれ以上の細胞からなる連鎖細胞は確認されていない。5）細胞は真空になる。しかし細胞長と細胞中に基盤を光学顕微鏡下でC. polykrikoidesとCochlodiniun sp. 竪沙型を区別するのは非常に困難であった。

Cochlodiniun属には外部形態がC. polykrikoidesに類似するもののが数多く見られ、類似種である。Cochlodiniun fulvescens Iwataki, Kawami et MatsuokaはCochlodiniun sp. in Yuki et Yoshimatsu 1989⑤が最近記載されたもの。Fig. 3, Fig. 3. C. polykrikoidesの細胞を約2週間でこの細胞が横溝の始まりから分岐して細胞を約1周する点がC. polykrikoidesと共通する。しかし C. fulvescens
Table 1. Sampling date and location.

<table>
<thead>
<tr>
<th>Sampling sites</th>
<th>Number of sample (date)</th>
<th>Latitude (N)</th>
<th>Longitude (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsushima Channel West</td>
<td>1 (20 Aug 06)</td>
<td>34°52'</td>
<td>129°22'</td>
</tr>
<tr>
<td>Aso Bay*</td>
<td>9 (17 Apr 06 – 18 Apr 07)</td>
<td>34°18'</td>
<td>129°15'</td>
</tr>
<tr>
<td>Yuno Bay</td>
<td>7 (21 Jun 06 – 22 Jan 07)</td>
<td>33°48'</td>
<td>129°40'</td>
</tr>
<tr>
<td>Iki Channel</td>
<td>1 (15 Mar 07)</td>
<td>33°38'</td>
<td>129°44'</td>
</tr>
<tr>
<td>off Hirado West</td>
<td>1 (15 Mar 07)</td>
<td>33°19'</td>
<td>129°21'</td>
</tr>
<tr>
<td>Usuka Bay*</td>
<td>12 (24 Apr 06 – 14 Apr 07)</td>
<td>33°23'</td>
<td>129°30'</td>
</tr>
<tr>
<td>between Tsushima Island and Jeju Island</td>
<td>1 (25 Jul 06)</td>
<td>33°44'</td>
<td>128°28'</td>
</tr>
<tr>
<td>Nana Bay*</td>
<td>12 (13 Apr 06 – 17 Apr 07)</td>
<td>32°01'</td>
<td>129°05'</td>
</tr>
<tr>
<td>Aokata Bay*</td>
<td>1 (22 Aug 06)</td>
<td>32°58'</td>
<td>128°03'</td>
</tr>
<tr>
<td>Nana Bay*</td>
<td>15 (18 Jul 06 – 27 Jan 07)</td>
<td>32°48'</td>
<td>129°46'</td>
</tr>
<tr>
<td>off Shin-Nagasaki Fishery Harbor*</td>
<td>24 (14 Apr 06 – 27 Apr 07)</td>
<td>32°55'</td>
<td>129°43'</td>
</tr>
<tr>
<td>Goto-Nada Area*</td>
<td>12 (12 Apr 06 – 26 Apr 07)</td>
<td>32°24’ – 32°58’</td>
<td>129°01’ – 129°30’</td>
</tr>
<tr>
<td>Ariake Bay</td>
<td>1 (18 Jun 06)</td>
<td>33°01’</td>
<td>129°08’</td>
</tr>
<tr>
<td>Amakusa-Nada Area*</td>
<td>8 (27 Apr 06 – 14 Dec 06)</td>
<td>32°00’ – 32°15’</td>
<td>129°15’ – 129°57’</td>
</tr>
<tr>
<td>Fuku Island South Area*</td>
<td>2 (6 and 26 May 06)</td>
<td>32°25’, 32°19’</td>
<td>128°40’, 128°34’</td>
</tr>
<tr>
<td>Danjo Islands West Area*</td>
<td>4 (26 Jul 06 – 24 Apr 07)</td>
<td>32°00’ – 32°14’</td>
<td>127°30’ – 128°17’</td>
</tr>
<tr>
<td>Kinko Bay</td>
<td>2 (9 Aug 06, 29 Nov 06)</td>
<td>31°35’</td>
<td>130°34’</td>
</tr>
<tr>
<td>off Satsuma Peninsula</td>
<td>1 (10 Aug 06)</td>
<td>31°00’</td>
<td>130°17’</td>
</tr>
<tr>
<td>off Satsun Islands</td>
<td>1 (28 Sep 06)</td>
<td>29°59’</td>
<td>128°40’</td>
</tr>
</tbody>
</table>

*Locations where cells of *Cochlodinium polykrikoides* detected.

Table 2. Occurrence and cell density of *Cochlodinium polykrikoides* in each location.

*Locations where cells of *Cochlodinium polykrikoides* detected.*

*Occurrences of *C. polykrikoides* referred from Kumamoto Prefectural Fisheries Research Center.*

[Cochlodinium polykrikoides] is a type of dinoflagellate that can cause red tides. The presence of this organism can be detected using cell density analysis. The table below shows the occurrence and cell density of *C. polykrikoides* in various locations. The density ranges from 0.1 to 100 cells/L, with a red tide event indicated as >100 cells/L. The locations where the organism was detected are marked with an asterisk. The data is broken down by year and month, with different symbols indicating the density and occurrence of the organism.

[Cochlodinium polykrikoides] cells are typically found in warm, shallow waters, and their presence can have significant ecological and economic impacts. The research conducted in this study aimed to identify the distribution and occurrence of *C. polykrikoides* and its potential role in marine ecosystems.

[Cochlodinium polykrikoides] cells are known to cause red tides, which are characterized by the discoloration of water due to the proliferation of these organisms. The study's findings contribute to our understanding of the organism's behavior and its impact on marine environments. Further research is needed to fully understand the ecological implications of *C. polykrikoides* and to develop strategies for managing red tide events.
水野 〇 川見 〇 山崎 〇 岩渕 〇 松岡：C. polykrikoides の出現

沖合での最高細胞密度は5月下旬の新長崎漁港での1.2 cells/Lであり、調査期間を通して冲合の調査点の細胞密度は沿岸域の細胞密度と比較すると非常に低かった。沿岸域における本種出現時の平均細胞密度は浅米湾が6.4cells/L、薄雲湾が3910.88cells/L、奈摩湾が4.85cells/Lであった。

新長崎漁港沖の水温は15.7 - 28.8℃、塩分は31.5 - 34.7で推移した。五島灘では水温は15.9 - 29.5℃、塩分は32.3 - 34.8の範囲であった。天草灘では水温が17.9 - 29.1℃、塩分が33.2 - 34.4の間であった。これら3海域の水温は4月の調査開始時よりもおよそ10℃であったが、徐々に上昇し5月中旬に30℃に達し、その後3月の14℃にまで徐々に低下した。塩分は調査開始時には約34.5であったが、徐々に下降し7月から8月には32.3になった後、再び上昇し20℃に34.4になった。

塩分は水温とは逆に冬季から春にかけて高く、夏に低くなる傾向があった。本種出現時の水温は19.0 - 29.1℃、塩分は32.0 - 33.6で、これらは培養実験における本種の増殖速度0.30 - 0.61 day⁻¹を示した水温と塩分環境と一致する。今回の調査でも、本種は沿岸域のみならず沖合や外洋域にも非常に低密度（0.2cells/L以下）であることが分かっている。冲合で出現が確認された時期は5月下旬から8月にかけてであり、多くの沿岸域で本種が比較的高密度で出現した9月から10月には出現が認められなかった。

沿岸域での出現状況

沿岸域での調査開始後の2006年4月の薄雲湾で本種の出現が初めて確認され、続いて6か月に7か月に対馬浅米湾で出現した（Fig. 4①）。8月には上五島湾、大川湾、新長崎漁港、9月には大村湾、新長崎漁港にも出現した。また、5月上旬の五島奈摩湾で9月に出現が確認された。その後、沖合南東部海域で減少し10月に出現が確認されたのは薄雲湾、奈摩湾、新長崎漁港のみであった。なお、薄雲湾では2006年4月から2007年2月まで継続して出現し、全ての調査時に本種遊泳細胞の出現を確認した。2007年3月は調査を行っていないため出現の有無は不明である。薄雲湾での本種出現時の水温は14.8 - 27.0℃、塩分は30.1 - 34.5であった。奈摩湾では水温15.0 - 24.1℃、塩分32.1 - 34.8℃、浅米湾では水温21.1 - 22.1℃、塩分30.5 - 33.4℃、新長崎漁港では24.3 - 28.7℃、塩分26.1 - 33.2℃、大村湾では水温29.0 - 31.2℃、塩分28.6 - 32.0℃の範囲で出現した。

調査期間での本種の出現環境は水温14.8 - 31.2℃、塩分36.1 - 34.8℃で、これは培養実験における本種の増殖速度0.06 - 0.22 day⁻¹の際の条件と一致する。

典型的な内海で年間の環境変化が著しい大村湾では水温が10.2 - 31.4℃、塩分が27.3 - 32.7で推移したが、大村湾以外の沿岸域では水温は14.4 - 29.0℃、塩分は26.1 - 34.8の範囲であった。本種の出現を確認したのは8月下旬に約9月上旬の2回のみであった。大村湾では2回の調査を行ったが、出現を確認した調査点では8・9月の2回のみの調査であるため前後の出現状況が不明である。

沖合での出現状況

調査開始後に沖合で本種の出現が初めて確認された海域は5月下旬の福江島南方沖と新長崎漁港沖であった（Fig. 4①）。両海域とも4細胞の連鎖群体からなる遊泳細胞が観察された。出現時の水温は19.0 - 19.7℃、塩分は33.0 - 33.8で、細胞密度は福江島南方沖で0.4cells/L、新長崎漁港沖で1.2cells/Lであった。その後、新長崎漁港沖では6 - 8月上旬まで継続して出現した。五島灘でも6月上旬に、その後8月上旬に出現した。天草灘では8月上旬に一度だけ出現が確認された（Fig. 4①）。

Fig. 2. Morphology of vegetative cells of Cochlidinum polykrikoides. 1. Four cells chain collected from Usuka Bay. 2. Cells chain collected from Goto-Nada Area. 3. Two cells chain collected from Goto-Nada Area. 4. Two cells chain collected from Shin-Nagasaki Fishery Harbor. 5. A solitary cell collected from Aso Bay. 6. A solitary cell collected from Shin-Nagasaki Fishery Harbor. 7. Single cell collected from off Shin-Nagasaki Fishery Harbor. 8. Two cells chain collected from Usuka Bay. 9. Two cells chain collected from Usuka Bay. Scale bars = 20μm.

Fig. 3. Morphology of vegetative cells of Cochlidinum fulvescens. 1. A solitary cell collected from Nama Bay. 2. A solitary cell collected from off Shin-Nagasaki Fishery Harbor. 3. Two cells chain collected from Nama Bay. 4. Two cells chain collected from Amakusa Nada Area. 5. Scale bars = 20μm.
越冬海域の推定

山田ほか165によると本種は水温12℃程度でも増殖可能であるとされ166。過去の調査でも薄香湾では遊泳細胞の状態で越冬が確認されている167。また八代海でも低水温期の1-2月に本種の出現が確認されており168遊泳細胞での越冬が示唆されている169。薄香湾では冬季の最低水温は約12℃168、170また八代海では対馬暖流の影響を受ける南部海域は水温が10℃以下になることはないとされている169。今回の調査海域で最低水温が12℃以下になった海域は大村湾のみである。薄香湾では2006年4月から2007年2月まで連続して本種遊泳細胞の出現を確認していることにより172この海域での本種の越冬が再確認された。薄香湾では2年間にわたり継続して出现していることから173本種は薄香湾で低温期にも常在し174西九州沿岸において薄香湾が本種の「種場」の一つになっていると考えられる。また調査期間中に本種が出現した奈摩湾と浅茅湾の冬季最低水温はそれぞれ12.8℃と12.1℃であることから175そこで本種遊泳細胞が越冬している可能性が指摘されて176。しかし奈摩湾で2006年9月から2007年1月（水温15.0℃）に本種遊泳細胞が出現していたものの177その後の2007年2月（6.0℃）と3月（4.6℃）には確認されていないことから178今回の調査では奈摩湾での越冬は確認できなかった。また深茅湾でも水温が上昇過程にある6月（21.1℃）と7月（22.1℃）にのみ出現し1794月から5月と8月から11月には確認されていなかったことから180深茅湾での越冬を考えるのは難しい。

2006年4月の研究開始後181本種遊泳細胞が最も早く出現した海域は薄香湾1822006年4月21日で続いて5月下旬に福江島南部沖や新長崎漁港沖183その後6月上旬に五島瀬である。5月の薄香湾奥部では本種の細胞密度が高かった（最大1450cells/L）がこの時期には河口部での出現を確認していない。6月には河口部の細胞密度が最大905cells/Lと増加したこと184は水温の上昇によって本種の増殖に適した環境になり185本種が増殖し186河口部から沖にと流出した可能性が考えられる。

今後の課題

本研究によって187沿岸域の多くの海域にC. polykrikoidesの遊泳細胞が存在することが明らかとなった。また本種が沿岸域で赤潮形成に至る以前に五島瀬等の沖合海域に遊泳細胞が少数ながら存在することを明らかにするとともに188薄香湾では越冬を裏付ける情報の確保を確認した。西九州における本種の拡散過程を考察する上で八代海でも低温水温の出現が確認されたことから189沿岸域の越冬が考慮されるべきである。
期に*C. polyhrikooides*の遊泳細胞が確認され越冬の可能性が指摘されているため*1*の越冬海域が複数存在する可能性を考える必要がある。2006年は5月より沖合いに本種遊泳細胞を確認したが*2*2006年4・5月の八代海での出現情報が無いため*3*この由来を考察することはできなかった。長崎周辺海域に出現する本種の由来を明らかにするためには*4*八代海と周辺海域での出現調査が必要となる。

今回の調査では可能の限り多くの培養株を作成するとともに*5*それらの形態と写真記録として残し*6* *C. polyhrikooides*と*C. ochlodinium*のワス型型の区別を試みた。しかし*7*現時点ではこの2種類を形態学的特徴から確実に区別するのは困難であった。そのため作成した培養株のDNA塩基配列や写真記録に基づく形態学的特徴を明確にした上で*8*両者を確実に識別することが今後の課題となる。

謝辞

本研究を遂行するにあたり*9*試料採集にご協力いただいた長崎大学水産学部附属練習船「長崎丸」*10*「鶴洋丸」および長崎県総合水産試験場「鶴丸」の船長ならびに乗組員の皆さま*11*本学卒業生の多瀬凉子氏*12*長崎県総合水産試験場の高木信夫氏に感謝いたします。対馬*13*上五島*14*奄美の調査では長崎県水産業普及指導センターの松倉一樹氏*15*市山大輔氏*16*松本欣弘氏*17*土内隼人氏*18*井田大作氏にご協力いただきました。本研究の一部は科学技術振興調整費課題「東シナ海有栖潮の日中韓国際連携研究」の経費によって実施した。

引用文献

2) 松岡司次郎：岩沼光：日本プランクトン学会報 *5*1, 38-45, 2004.

16) 坂口昌生・矢木信夫・岩沼光：日本プランクトン学会報 *52*, 4-10, 2005.

