143

Frequent Loss of Heterozygosity in Radiation-Induced Lymphomas of Mice
Masaaki OKUMOTO, Nobuko MORI, Chang-Woo SONG, Kenjiro TABATA, Kihie KUBO,
Shunue IMAI, Ryosuke KOMINAMI, Yasuhiro TAKAMORI, Koizumir ESAKI;

We have analyzed the loss of heterozygosity (LOH) at polymorphic microsatellite loci and
cytogenetic status in radiation-induced lymphomas of (BALB/cHeA x STS/A)F1 hybrid mice.
Highly frequent LOH was observed in the regions on chromosome 4, 12 and 19, although the
frequencies of LOH were very low (0–6%) in other regions examined so far. A region containing
d19Mit11 locus (31 cM from centromere) on chromosome 19 showed 51% of LOH (37/73 lymphomas),
while regions containing d4Mit7 locus (32 cM) on chromosome 4 and d12Mit17 locus
(57 cM) on chromosome 12 showed 30% (14/47) and 62% (29/47) of LOH, respectively.
In only the region of LOH on chromosome 4, alleles derived from parental STS/A mice, a
resistant strain to radiation lymphogenesis, were lost significantly more than those of the other
sensitive parents, BALB/cHeA mice. Cytogenetical analysis of six lymphomas with both wide range
of LOH on chromosome 4 and on chromosomes 12 or 19 showed obvious deletion of the
chromosomes. These results suggest the generation of wide range of uniparental disomy for
these regions.

144

Involvement of Ubiquitin-Conjugating System in DNA Repair in
Mammalian Cells
1Hironobu IKEHATA, 2Fumio HANAOKA, and 1Tetsuya ONO; 1Tohoku Univ.

We reported previously the increased sensitivity and defective induced
mutagenicity of ts85 cells, a temperature-sensitive mutant of ubiquitin-activating
enzyme E1, to ultraviolet light (UV) than its parental mouse cell line FM3A. The
similar phenotypes have been reported for some yeast DNA repair-defective mutants
which are also deficient in the ubiquitin system, like as Saccharomyces cerevisiae rad6
mutants. However, the mechanism of the mutagenic deficiency observed there is still
unknown. Now we tried an analysis on this mechanism and found a significant
elongation of the expression time for the mutation induction in ts85.

145

Radioprotective effects of L-ascorbic acid
Shinji KOYAMA, Seiji KODAMA, Keiji SUZUKI, *Takuro MATSUMOTO,
*Tetsuo MIYAZAKI, Masami WATANABE, Fac. of Pharm. Sci., Nagasaki Univ., Nagasaki
852, Japan and *School of Eng., Nagoya Univ., Nagoya 464-01, Japan.

We have previously reported that post-irradiation treatment by L-ascorbic acid (AsA) efficiently
reduced mutation frequency in X-irradiated human embryo cells. We also found that AsA scavenged
long-lived organic radicals (LL radicals) (T1/2=10 hours) raised in gamma-rays-irradiated albumin solution
rather than short-lived radicals, such as OH radicals. Therefore, we speculated that LL radicals might be
related to mutation induction in human cells. To make clear this speculation, in this study we treated cells
with AsA 20 hours after X-irradiation. We could not find any difference in surviving fraction between
cells treated with AsA soon after irradiation and cells treated 20 hours after irradiation, but mutation
frequency was remarkably suppressed in both cells. These results suggest that the LL radicals still
remain in cells 20 hours after irradiation, and they may play more important role than short-lived radicals
for mutation induction in X-irradiated cells.