Cavity-backed Resistance-loaded Planar Monopole Antenna

Mitsuo TAGUCHI*, Yoshitaka MATSUOKA, Yoichi TOGUCHI**, Kazumasa TANAKA
Dept. of Electrical & Electronic Eng., Nagasaki University
1-14 Bunky o-machi, Nagasaki-shi, 852-8521, Japan
** Information Technology Research Center, Omron Corporation
Horikawa-Higashiiru, Shiokoji-dori, Simogyo-ku, Kyoto-shi, 600-8530 Japan

Introduction
An antenna must operate effectively over a wide range of frequencies in
many applications such as the impulse radar, which transmit and receive impulse
signal. The authors have analyzed the small-sized cavity-backed resistance-
loaded monopole antenna and shown its broadband operation for the frequencies
from 0.5GHz to 4.5GHz [1]. The dimension of rectangular cavity is 48mm by
44mm by 44mm.

In this paper, this antenna is used for the transmitting antenna of impulse
circuit, and the actual gain of the antenna with the transmitting circuit is analyzed.
In the numerical analysis of antenna, the electromagnetic simulator “Fidelity”
based on FDTD method is used [2]. The scattering parameters of transmitting
circuit are calculated by using the circuit simulator “S-nap field” [3].

Structure of resistance-loaded monopole antenna and amplifier circuit
Figure 1 shows the structure of cavity-backed resistance-loaded planar
monopole antenna. The monopole antenna is located within a rectangular
cavity of \(C_x = 48 \text{mm} \) by \(C_y = 44 \text{mm} \) by \(C_z = 44 \text{mm} \) in dimensions. The
conducting plate of 30cm by 30cm in size is attached at the aperture of cavity.
The resistance \(R \) is loaded between the top of monopole and the wall of cavity
for reducing ringing within antenna structure. At the feed point of antenna, the
amplifier circuit with a silicon transistor 2SC5761 (NESG2030M04) is
connected. Figure 2 shows the amplifier circuit.

In the numerical analysis of antenna, the perfectly matched layer of
six-layer and fourth-order is used as the absorbing boundary condition. The
space steps are from 1 mm to 4 mm (non-uniform mesh). The calculation
region is 140mm by 130mm by 136mm in dimensions.

Formulation of gain
Figure 3 shows the equivalent circuit of the active transmitting antenna.
The scattering matrix represents the amplifier circuit. \(V_i^+ \) and \(V_i^- \) are the
incident and reflected voltages at the i-th port (i=1, 2). The average power delivered to the antenna is expressed as follows [4].

\[P_L = \frac{|V_s|^2}{2Z_0} \left(1 - \left|\Gamma_s\right|^2 \right) \]

(1)

\(V_s^- \) is expressed in terms of \(\Gamma_s \) and \(\Gamma_L \).

\[V_s^- = \frac{S_{21}V_1^+}{1 - S_{22}\Gamma_L} = \frac{S_{21}V_1^+}{2(1 - S_{22}\Gamma_L)1 - \Gamma_s\Gamma_m}\]

(2)

where \(\Gamma_s \) and \(\Gamma_L \) are the reflection coefficients seen from the input port of the amplifier circuit toward the generator, and that seen from the output port toward the antenna, respectively. Then, the average power delivered to the antenna is expressed as

\[P_L = \frac{|V_m|^2 \left|S_{21}\right|^2 \left(1 - \left|\Gamma_L\right|^2\right)}{8Z_0 \left|1 - S_{22}\Gamma_L\right|^2 \left|1 - \Gamma_s\Gamma_m\right|^2}. \]

(3)

Since \(Z_m \) is equal to the characteristic impedance \(Z_0 \), \(\Gamma_s \) becomes zero. Then \(P_L \) is reduced as

\[P_L = \frac{|V_m|^2 \left|S_{21}\right|^2 \left(1 - \left|\Gamma_L\right|^2\right)}{8Z_0 \left|1 - S_{22}\Gamma_L\right|^2}. \]

(4)

The gain of amplifier circuit \(G_a \) is defined as the ratio between the power delivered to the antenna and the input power to the amplifier circuit. Therefore, \(G_a \) is summarized as follows.

\[G_a = \frac{\left|S_{21}\right|^2 \left(1 - \left|\Gamma_L\right|^2\right)}{4\left|1 - S_{22}\Gamma_L\right|^2}. \]

(5)

Let \(G_d \) be the directivity of antenna element, the actual gain of active antenna is expressed as

\[G = G_a G_d \]

(6)
Numerical results

Figure 4 show the calculated input impedance of antenna element and the calculated scattering parameters of amplifier circuit. The width of monopole is $W = 36\,\text{mm}$ and the loaded resistance is $68\,\Omega$. The calculated input impedances agree well with the measured data [1].

Figure 5 show the calculated directivity of antenna element, the power gain of amplifier circuit, and the calculated actual gain of active transmitting antenna. The actual gains more than 10dB are obtained at the frequencies from 0.5GHz to 4.5GHz.

Conclusion

The cavity-backed resistance-loaded planar monopole antenna has been analyzed and its broadband operation has been shown for the frequencies from 0.5GHz to 4.5GHz.

This research was supported in part by Grants-in-Aid for Scientific Research 13650417 from Japan Society for the Promotion of Science.

References

Fig. 3 Equivalent circuit of active transmitting antenna.

Fig. 4 Calculated input impedance of antenna and scattering parameters of amplifier circuit. W=36mm, Resistance=68Ω

Fig. 5 Calculated directivity of monopole antenna, circuit gain and actual gain of transmitting antenna. W=36mm, Resistance=68Ω