<table>
<thead>
<tr>
<th>Source Molecular Effect on Amorphous Carbon Film Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
</tr>
<tr>
<td>Citation</td>
</tr>
<tr>
<td>Issue Date</td>
</tr>
<tr>
<td>URL</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University's Academic Output SITE
Source Molecular Effect on Amorphous Carbon Film Deposition

Hiroki Kawazoe¹, Takanori Inayoshi¹, Masanori Shinohara²*, Yoshinobu Matsuda², Hiroshi Fujiyama¹, Yuki Nitta³ and Tatsuyuki Nakatani³

¹Graduate School of Science and Technology, Nagasaki University
²Department of Electrical and Electronic Engineering, Nagasaki University
³Toyo Advanced Technologies Co., Ltd., 5-3-38 Ujina-higashi Ninami-ku Hiroshima, 734-8501, Japan.
*E-mail: sinohara@nagasaki-u.ac.jp

Abstract
We investigated deposition process of amorphous carbon films using acetylene and methane as a source molecule, by using infrared spectroscopy in multiple internal reflection geometry (MIR-IRAS). We found that deposited film structures were different due to source molecules.

Keywords:
Acetylene, Methane, Plasma, Amorphous carbon film, Deposition process, Infrared spectroscopy

Introduction
An amorphous carbon film is used in many fields because it has various useful characteristics. The films were often deposited by using acetylene (C₂H₂) as a source gas as well as by using methane. We think the film structures have a relation with the structure of source molecule. Then, we investigate the difference of deposition process of the films due to source molecules: acetylene (C₂H₂) and methane (CH₄). We used “in-situ” and “real-time” infrared spectroscopy in multiple internal reflection geometry (MIR-IRAS).

Experiments
Figure1 shows the experimental setup used in this study. Source gases,
such as C₂H₂ or CH₄, were introduced from the glass tube into the vacuum chamber. Plasma excitation was accomplished by RF power (13.56 MHz) to the coil wrapped around the glass tube via the matching box. Si substrate (10×40 mm) that grinds the short edges to 45 degrees is mounted as shown in the figure. The infrared light traveled into the Si sample with internal multiple reflections. This MIR-IRAS has high sensitivity to the surface reaction even during plasma.

Results and Discussions

When CH₄ was used as a source gas, we observed the large peaks due to the sp³-CHₓ (x=1~3) species and the small peaks due to the sp²-C species. On the other hand, when C₂H₂ was used, we observed the large peaks due to the sp-CH species, the sp-C species, the sp²-C species, and the sp³-CHₓ species, in addition to the peak due to the sp³-CHₓ species.

These results indicated that the sp- species is easily formed when C₂H₂ was used. We considered that a CH₄ molecule is composed of sp³-CH bond in itself; on the other hand, a C₂H₂ molecule contains an sp-bond in itself. This difference leads to the film structures. It means that the decomposition of source molecules during plasma is also different.

Conclusions

Deposition process of amorphous carbon films using acetylene and methane as a source molecule was investigated by using infrared spectroscopy in multiple internal reflection geometry (MIR-IRAS). Films deposited using acetylene contained a lot of the sp-species such as the sp-C, sp-CH species. On the other hand, films deposited using methane contained a lot of sp³-CHₓ species and less the sp-species.

Acknowledgements

This research was partially supported by a Grant-in-Aid for Young Scientists (A), No. 20684027 (2008-2011) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan