Preparation of Pore Filling Membrane with Pd Nanoparticles

Aki Tominaga1, Osamu Nakagoe2 and Shuji Tanabe1*

1Graduate School of Science and Technology;
2Department of Materials Science and Engineering,
Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
*Tel: +81-95-819-2659, Fax: +81-95-819-2661, E-mail: s-tanabe@nagasaki-u.ac.jp

Abstract
Hydrogen perm-selective membranes were composed Pd nanoparticles. The nanoparticles were prepared by sonochemical reduction from PdII ions. Then the nanoparticles deposited on a substrate disc with electrophoresis technique. These electrophoretic membranes have shown high performance of perm-selectivity for H$_2$ with separation factor α=3.85, under room temperature.

Introduction
To realize the H$_2$ permeable membrane with high permeance rate, thinner metallic membrane has to be required$^{1)}$. Thinner and denser membranes are required because of higher permeance rate of H$_2$.

In this work, Pd nanoparticles were prepared with sonochemical reduction technique. The nanoparticles were precipitated on anodic oxidation alumina disc, and then the perm-selective membranes were created successfully using electrophoresis technique. Permeances of H$_2$ were measured with a closed circulation system at room temperature.

Experimental
Pd nanoparticles were prepared from PdII solution (0.4mM) with ultrasonic reduction under Ar atmosphere for 20 min$^2)$. Formation of nanoparticles was confirmed by UV-vis spectra. Morphology of nanoparticles was observed by high-resolution transmission electron microscope (HR-TEM). The prepared Pd nanoparticles were deposited on the surface of anodic aluminum oxide (AAO, pore size : 20nm) substrates by electrophoresis (electrophoresis condition : 500V, 3min). The morphologies of the deposited membrane were observed by field emission scanning electron microscope (FE-SEM).

Permeances of N$_2$ and H$_2$ were evaluated by monitoring the pressure on both sides of membrane using a vacuum line under ambient temperature.

Fig.1 TEM photograph of Pd nanoparticles. (average particle size = 4.04 ± 1.28 nm)
Volume of permeation \((q \text{ [cm}^3\text{]}) \), permeability coefficient \((R \text{ [cm}^3\text{(cm}^2\text{·mmHg·sec}^{-1}\text{)]}) \), and separation factor \((\alpha) \) were calculated by equations described as follows,

\[
q = R(p_1-p_2)A\Delta t,
\]
\[
\alpha = \frac{R_{H_2}}{R_{N_2}},
\]

where \(P \) is transmission coefficient \([\text{cm}^3\cdot\text{cm} (\text{cm}^2\cdot\text{cmHg·sec})^{-1}] \), \((p_1-p_2) \) is differential pressure \([\text{cmHg}] \), \(A \) is membrane area \([\text{cm}^2] \), \(t \) is differential time \([\text{sec}] \), \(l \) \([\text{cm}] \) is membrane thickness.

Results and Discussions

Table 1. Gas permeation properties of obtained membrane

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Permeation gas</th>
<th>(R \text{ [cm}^3\text{(cm}^2\text{·cmHg·sec}^{-1}\text{)]}))</th>
<th>(\alpha) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before electrophoresis</td>
<td>H(_2)</td>
<td>(1.97\times10^{-6})</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>N(_2)</td>
<td>(6.77\times10^{-7})</td>
<td></td>
</tr>
<tr>
<td>After electrophoresis</td>
<td>H(_2)</td>
<td>(9.37\times10^{-8})</td>
<td>3.85</td>
</tr>
<tr>
<td></td>
<td>N(_2)</td>
<td>(2.43\times10^{-8})</td>
<td></td>
</tr>
</tbody>
</table>

From Fig. 1, average size of Pd nanoparticles was ca. 4.0 nm in diameter. Table 1 shows photographs of AAO substrates before and after electrophoresis of Pd nanoparticles. It was clear that Pd nanoparticles were fixed on the surface of substrate because AAO substrate colored to black after the electrophoresis. These data indicate that Pd nanoparticles were filled in nano pores of AAO substrate. This membrane has separation factor of hydrogen \(\alpha = 3.85 \).

Conclusions

In summary, we developed new preparation procedure which could make the very thin hydrogen perm-selective membrane. The procedure consisted of two preparation steps, one was the preparation of nanoparticles by sonochemical reduction and the other was deposition of the particles on a substrate by the electrophoresis method. The hydrogen permeance rate and hydrogen-nitrogen separation factor of the obtained membrane showed very high performance at the room temperature.

References