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Abstract

In this paper we prove the prime number theorem using the properties of the zeta
function. The purpose of the present paper is to complete the proof given by Greene
and Krantz [GRK] in which they omitted the proofs of some lemmas.

1 Introduction

Let 7(n) denote the number of primes not exceeding n. Then the prime number theorem

asserts that
TR

n—00 n
logn

Gauss conjectured this formula when he was fourteen years old. It was J. Hadamard and
C. de la Vallee Poussin who in 1896 independently proved the prime number theorem.
They used complex analysis—in particular an analysis of the Riemann zeta function. The
purpose of the present paper is to complete the proof due to Greene and Krantz [GRK].

=1

2 Preliminaries

For Rez > 1, define

(=Y~

n®’
n=1

((2) is called Riemann’s zeta function. ¢(z) is holomorphic in {z | Rez > 1}. It is known
that ((z) has the following properties. We omit the proof.

(R.1) ¢(#) continues holomorphically to C\{1}.
(R.2) ((2) has a simple pole at z = 1 with residue 1.

(R.3) The only zeros of {(2) not in the set {z | 0 <Rez < 1} are at —2n (n € N).

Lemma 1 ({(2) has no zero on {z | Rez = 1}.
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Proof Suppose ((1 + itg) = 0 for some tg € R, ¢y # 0. Define
®(2) = ¢*(2) - ¢*(2 + ito) - C(2 + 2ito).
Then there exist holomorphic functions h; and hs in a neighborhood of 1 such that

3
B(z) = <—1— + hl(z)> (2 = 1ha(2)*¢(z + 2ito)

z—1
in a neighborhood of z = 1. Hence & is expressed by
O(z)=on(z—1)F+ag(z -2 +... (g #0,k>1)
in a neighborhood of z = 1. Then

(I)’(z) _ o1k + B k
o(z) (z-D{or+as(z—1)+---} =7 th(2)

where hg is holomorphic in a neighborhood of z = 1. Then there exists €9 > 0 such that

?'(z)
Re 32) >0 (1)
for 1 <z <1+ ¢g.
On the other hand, we obtain
M _ 3¢ (z)  AC(z +1ity) (x4 2it)
®(x) C(x)  ((z+ite)  C(x+ 2ito)

0o
— ZA(n){_3e—xlogn . 46—(:c+it0)logn . e—(x+2ito)logn}'
n=2

Consequently,

Re = Z A(n)e™1%8™{_3 _ 4 cos(ty logn) — cos(2tglogn)}

-2 Z A(n)e1°8" (cos(tg logn) + 1) < 0.
n=2

This contradicts (1).

3 Proof of the prime number theorem

o=~ (55 ++51) %

Theorem 1 G(z) is holomorphic on {z | Rez > 1}.

Definition Define
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Proof From the properties of the zeta function (R.1), (R.2) and Lemma 1, it is sufficient
to show that G(z) is holomorphic at z = 1. It follows from the property (R.2) and the
Laurent expansion that

((2) = 5 + h(o),
where h is an entire function. For z near 1,
() _ it DRG)
G T I G-
- e} See - ey
= —;% +9(2),

where g is holomorphic in a neighborhood of 1. Then

(5 )t

is holomorphic at z = 1. U

=10 5)

pEP

Theorem 2 For Rez > 1,

where P ={2,3,5,---} = {p1,p2,p3,- -+ } is the set of positive primes.
Proof Since Ezo:l n~% converges for Re z > 1, Epe p P~* converges, and hence

m(-5)

peEP

converges. For ¢ > 0, there exists a natural number N such that

Since ((z) = Yoo, L, we have

n=1 nz?

1 e | ad 1
(1_27>C(z>=2'ﬁ?‘z(2n)z=Z(2n—1)z'

n=1 n=1 n=1
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Let A, be the set of all positive integers Wthh are divisible by at least one of py,--- , pn.
Then we obtain

()2 - <1—3%>iﬁ

where the summation ) g 31; is taken over all elements g of N — A3. Continuing in this

manner, we obtain
(r-52r) Ot (- 4o

1
=1+ _ +...
(pn+1)?
1
:r'z—a

T

where the summation Z - is taken over all elements r of N — Ay. Thus we have

N

1 00
E(l*w) C(Z)“—1<n§+l|z‘<€-

Therefore we have proved that

e fl0-) 1L 2)

Jj=1

Definition Define A:{n€Z|n >0} >R by

_ [ logp (fm=p*pe PkeN)
A(m) = { 0 (otherwise)

Then we have the following:

Theorem 3 For Rez > 1 we have

_C’(Z) _ = n —zlogn
0 —;A( )e .
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Proof By Theorem 1, we have

—log((z Z log(1 — = Z log(1 — e2108P),
peP peP
Consequently,
C/(Z) _ (lng ~#logp - ——zlogp k
- C(z) - Z —zlogp - Z logp Z )
peP peP k=1
oo
— Z Z(logp)e—zlogp’c _ ZA(n)e—zlogn

Definition For z > 0, ¢ € R, define
(2) for p € P, m.(p) denotes the greatest integer k such that p* < .

Lemma 2 Forz > 3,

¥ w1 ) ler Y,
x ~ logz z \logx —2loglogx

logz
Proof Since p™=(P) < z, we obtain m,(p) < logz/logp. Then

Y@) = Y An)=) logp=) my(p)logp

n<z pk<z p<lz

< Zlogac = 7(x)log z.
pLlz

This proves the left side inequality. Let 1 < y < z. Then

we) < oal)+ Y 1<)+ Y 2P

(o)
y<p<z y<p<lz &Y

UG
Zlogp<7r @

IN

logy o

z P(z)
<
m(z) < 7 (long) + logx — 2loglog x

< E Y(x) ( logx )

log?z  logz \logz — 3loglogz

This proves the right side inequality.
Definition For u > 0, u € R, define K(u) = ¢(e")e™™.

The following lemma follows easily from Lemma, 2.
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Lemma 3 The prime number theorem holds if and only if lim K(u) = 1.

I(z)) = z/ooow(e“)e_wdu.

Proof Since ¥(n) = ¢(n — 1) + A(n), we have by Theorem 2

Lemma 4 For Rez > 1,

CI Z C —Z ogn = '—Z O n = —Z10gn
_C((Z)):Z log :Z g *Zd}(n—l)e log
n=2 n=2 n=3
o 0 log(n+1)
= Z (n)(e‘zmgn — g~ #log(n+1) _ Z w(n)/ ze **du.
n=2 n=2 logn

Since (e*) = ¥(n) for n < e* < n + 1, we have

¢x) _ i /‘°g("+”
— = z
1

C(Z) n— 2 ogn

Y(e")e *du
= 2z P(e*)e ”Z“du—z/ Y(e*)e * du

log 2

Theorem 4 For Rez > 1,

Proof By Lemma 4 we have

/ Y(e")e™*"dz — / P(e*)e *dz — / e~ Dugy

:jﬁ (W(e¥)e™ — 1)e~ (z— l)udu:/ (K(u) - 1)e =(z=u g,

0

Lemma 5

Proof
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Lemma 6 For A >0, s € R\{0},

2 . 92
A [\ ixst sin” As
- 1 = 1AS — A .
/_2 2 ( 2)6 “=ATep

2 2
A IR / t
AN T PR — 1- 2
/_2 5 (1 5 > et dt i A 5 cos \stdt
2 . /
_ )\/ 1_3 sin Ast it
2 AS

Proof

0
1 /2
= — in(Ast)dt
23/0 sin(Ast)
_ )\sin2)\s
T (e
O
Theorem 5 For A> 1,y >0,0<e¢e <1, we have
. 2
o v _ -1y (sinv C(A)
K(y+~)—1)e st )<———> dv| < —, 2
/_y)\( (y )\) ) v Y @)

where C(X) is a constant which depends only on A.

Proof With the change of variable u =y + ¥,

I = /o; (K(y+§)—1>e‘€(y+“*—l) <§i—g£>2dv

_ /O (K () - e <—51“A(2E“_;)1’))>2 Adu

_ /0 (K () - 1)ee < /_ 223 (1 - %’) ewy—uﬂdt) du,

Since K (u) = ¢(e*)e™ < u and
/ |K(u) — 1le™"du < / (1+u)e *"du < o0,
0 0

by Fubuni’s theorem we obtain

2 00 ‘
I = / (/ (K(u) — 1)6—((1+e+i>\t)—1)udu) é (1 _ |_t_|> eVt gy
-2 0 2 9
2
= / {G(l FetiM)l <1 - M)}euytdt
-2 2 2
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Let
Eyx={z+iy|1<z<2, =22 <y <2\}.
Define
My(\) = sup |G(2)| + sup |G'(2)]
zEE) z€E)
and

My(\) = My(A\)A2
For 0 <t < 2, define
A
£() = G(1+e+ix)5 (1 - 3) .

2
Then
ffA)=G(1+e+ i/\t)ii\i (1 - 3) ~-G(l4+e+ z'/\t)é.
2 2 4
Hence
IF)] < Ma(N),  |f/(8)] < Ma(N).
Then

2 . 2 1 . t’
/Of(t)e*ytdt} = /Of(t) (We)‘y>dt

2

. 2 iyt
- |l [ 1o
4Ms())
Ay

Similarly, we obtain

0 ; 4M5(N)
iA 2
‘/_2f(t)e ytdt\ < p

Define C'(\) = 8M3(A)/A. Then I < C(A)/y. This completes the proof of Theorem 5. O

Corollary 1 For all A > 1 and y > 0,

o)

00 . 2
v sinv
K(y+-)-1 <—) do| < 22, 3
/_y,\< ( /\> ) v Y 3)
Proof It follows from Theorem 5 that
00 . 2
v\ [ sinv —1
Kly++< (—) e EWHA gy
/_y)\ ( /\) v
00 . 2
< / <smv> e ) gy 4 C(N) <+ C(A)
—yA % Y )
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By the monotone convergence theorem, we obtain

C N2
lim /00 K (y + 2) 0T e gy
e—0+ y/\ /\ v

e v\ [sinv)? -1
:/ lir(r)1+K(y+X) (-) e~tWTA gy
_y,\f—" v

o vy [sinv)?
= Kly+ - (———) dv.
_/_yA ( )\) v
. 2
o v\ [sinv C(\)
K(y+2) (22 go<ns 222
[ 6e5) (5) wse
vy (sinv)?
K(v+5) (T )
is integrable on [—yA, c0). Define
. 2
v STETA
o) = (K (y+3) 1) (T) e o),

pons (o 5) 1) (57)

Hence

Therefore,

Then

17

for v € [-Ay,00). Lebesgue’s dominated convergence theorem tells us that letting ¢ — 0

in (2) gives

INGGHRICORIEES
Lemma 7 Fory >0, A > 1, —V X <v <V, we have
(1) K(y— %) ﬁK(wa%) e
2) K(y+—\71—x> zK(y+§)e‘%,
Proof Since 9(u) is increasing, we have
K ( - 7%) VTV = (! VR) < h(eVHE) = K (y+ %) 3

Therefore we have .
v\ 2
Kly—— ) <K —levx.
( \/x>— (v+3) e

This proves (1). (2) is proved in the same way.
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Lemma 8 Fory>1, A > 1,

(/5 (8 #) o) s (220,

Proof We denote the left side of the above inequality by I;. Then by Lemma 7(1) and
Corollary 1 we obtain

N 2
I; < e% <va) K(y—#g)dv
v A

IN
®
Sk
—
8
7N
®.
E
<
N——
[\
=
—
=
+
>
~—
U
<

IA
[q:]
N

IN
™
Sk
TN —
|
> 8
TN
=
7~
<
+
> <
~—
|
—_
N—
TN
<]
e‘z
[
N——
QU
<
+
=
——

Lemma 9 K(z) is a bounded function.

Proof Suppose K is unbounded. Then there exists a sequence {z;} such that z; — oo
and K(z;) — oo. Put z; + % = y;. Then by Lemma 8 we obtain

v = - 5) ([ (4 o) 4 (G2+0).

Letting j — oo gives v
VX 2
ws ([ () a) ek
A\ v

This is a contradiction. U
Lemma 10 For any sequence z; — oo such that {K(z;)} has a limit,

J—oo

Proof Put z; + % = y;. By Lemma 8, we have
1
K(z;) = K|y - 7

s A S)(h(=e)
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Then .
A N2\
lim K(z;) < eAT (/ (—va) dv) .
j—ro0 VA v

Letting A — oo yields lim K(z;) <1.

J—o0

Lemma 11 For any sequence x; — oo such that {K(z;)} has a limit,

lim K(z;) >1

J—o -

Proof Put z; - % = y;. We may assume that y; > 1, A > 1. Then it follows from
Lemma 7(2) that

N 2
K(x;)es / <_> dv =

vV
— =
> .

=
~~
8
el
SN
)
Sl
—
S S
N
.
e (B
<
N——
u
<
v
—
8
TN
<
< (B
<
[\
~
=
TN
A
+
>|
N—
|
fue—y
N’
U
<

(V2
T
S S

8 N
«

S =
(4
N—

QL

<

|

: ~
+

| =
?\

v

S
TN
Q.
@|:
(4
N—

.

<
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N 2 ) 2
2/ <smv> dv—(M+1)/ <smv) dv
-V v [v]>vX v

c
Y

Letting j — oo yields
Ny 2 -1
lim K(z;) > 6_% (/ (i@ﬂ) dv)
j—oo A\ v
N 2 . 2
X / <ﬁ) dv—(M+1)/ (ﬂ) dv b .
V5N v IUIZ\/X v

lim K(z;) > 1.

Jj—oo

Letting A — oo gives

O

Theorem 6 (Prime Number Theorem) Let w(n) denote the number of primes not
exceeding n. Then

-
= ()

Proof By Lemma 3, it is sufficient to show that

=1.

lim K(z)=1.

r—00

Suppose that lim K(z) either does not exist or does not equal 1. Then there exists a
T—00

sequence {z;} such that {K(z;)} does not converge to 1 and z; — oo. Then there exists
€ > 0 such that
[K(z;) -1 2¢ (4)

for infinitely many j. We may assume that {z;} satisfies (4). Since {K(z;)} is bounded
by Lemma 9, there exists a convergent subsequence {K(z;,)}. Let lim K(z;,) = a. By
n—oo

Lemma 10 and Lemma 11, o = 1. But it follows from (4) that |a—1| > ¢, which is a contra-
diction. ]
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