魚類は水中に乏しいO₂を効率よく得るため、酸素摂取能力が高い鰓を発達させている。鰓表面では、口から鰓孔へと流れる水が逆流する血流の流れと、僅か数ミクロンの上皮を介して接しており、非常に効率の高いガス交換が営まれている。O₂と比較すると分子状CO₂は水に対する溶解度が約30倍も大きく、従って、魚類はCO₂排出に関しては過呼吸の状態にある。その結果、魚類体液のCO₂分圧（Pcco₂）は0.27～0.54 kPa（1 kPa＝7.5 mmHg）と、陸上生物の体液Pcco₂と比べると1桁低くなっている。従って、水中Pcco₂の僅かの上昇も鰓を介してのPcco₂勾配を逆転させ、体液Pcco₂を増大させる可能性がある。血を通じて体液中に急速に拡散したCO₂は、H₂CO₃→HCO₃⁻→CO₃⁻へと解離し、体液pHを低下させることによって生体に様々な生理的影響を与える。\(^5\)

Pcco₂が魚類に与える影響については、現在まではとんと淡水魚の種で調べられており、海産魚類に関しての知見は極めて限られている。2001年3月時点で、CO₂が魚類に与える影響について文献検索を行って得られた総文献数1099編の中、淡水魚を用いた研究が全体の4分の3を超える79編を占め、海産魚では軟骨魚類に用いた研究が41編、海産軟骨魚類に用いた研究は20編、海産節肢魚類に用いた研究は4編に止まった。実験期間に関しては、海産魚限って見ると最長の実験期間でも120時間に止まっていた。

1. 急性毒性
CO₂を5 %以上含む空気で平衡させた海水中では、短時間中に海産の真骨魚類は鰓死する（Smith・Cuellar・石松未発表）。ヒラメでは、4 % CO₂で平衡させた海水中（Pcco₂＝4 kPa）では72時間まで鰓死率0 %であったが、5 %では48時間以内に全個体（N=5）が鰓死した。ブリでは、鰓死時間はより短く、5 % CO₂で平衡させた海水中で8時間以内に全個体の鰓死が起こった。ヨーロッパの海産海亜鰭（Dicentrarchus labrax）では、96時間及び120時間LC₅₀はそれぞれPcco₂6.72 kPa、6.28 kPaと報告されている。\(^3\)またマダイでPcco₂5.6～6.0 kPaで22時間鰓死率40 %、これ以上では全個体が鰓死したとの報告がある。\(^3\)

2. 血液酸素運搬
Pcco₂の上昇に伴ってヘモグロビンの酸素親和性は生理的pHの範囲内では低下する。この効果は軟骨魚類を除く脊椎動物の血液に関して認められ、Bohr効果と呼ばれる。これに加えて、真骨魚類ではPcco₂の増加は酸素容量をも低下させる（Roult効果）。高CO₂環境下ではこれらの効果のために、ヘモグロビンと酸素との結合が抑制される。真骨魚を高CO₂環境に移行させた時、血液Pcco₂の上昇によるpHの低下は、動脈血の酸素飽和度がいったん低下することがある。このような条件の下では海産クロム類及び酸素由来から血液中にカルコラミンが放出される。カルコラミンは、赤血球表面に存在する側受体に作用して膜のNa⁺/H⁺シフトを活性化させ、ヘモグロビンの酸素飽和度を回復させると考えられている。また血液中に酸素含量の上昇は肺管から肺管から酸素の放出を促し、ヘマトクリットを増大させる。\(^4\)

3. 呼吸運動
一般に魚類を含む水生動物の換気運動は、酸素の摂取を主な調節因子として機能しているといわれ、CO₂の排出が換気の主な調節因子となっている空気呼吸動物における換気調節機構は対比されてきた。\(^6\)しかし、最近CO₂の呼吸刺激因子としての重要性を示唆する実験結果が報告されようになり、従来の見解の見直しが迫られている。

4. 酸塩基平衡
高CO₂環境に曝露された場合の魚類の血液pHは、急速なとも一過性の低下とそれに続く正常pHへの回復が特徴である。この時、血液のHCO₃⁻は時間とともに負荷されたCO₂レベルに応じて上昇する（図1A）。酸性水に曝露された場合の応答は、これとは異なり曝露初期の急速な低下と回復は見られない（図1B）。CO₂レベルの上昇によって引き起こされる体液pHの
図1 CO₂及び酸性水曝露時の血液pHと血漿HCO₃⁻イオン濃度の変化。(A)ヒラメ：3％CO₂曝露、水温20℃（林・石松、未発表）、(B)ウナギ：酸性水pH4.5、水温20℃（石松・田川、未発表）。

低下（呼吸性アシドーシス）に対する補償は、水中動物の場合、主に環境水中への酸排出によって行われる。CO₂曝露開始直後の血液pHの低下幅は、同じに起こる環境水のpH低下の幅よりもかなり小さく保たれる（1％CO₂条件下で、海水pHは8.2から7.0へ低下するのに対し、血液pHの低下幅はヒラメで0.15、プリで0.09（林・Cuéllar・石松、末発表））。CO₂曝露時のpH回復速度は海産魚で早く、淡水魚では遅い。魚種は鰤が主な排出器官であり、腎臓の寄与は一般に僅かである。（5）環境水pCO₂が1～2kPaの場合、淡水魚・海産魚を問わず血液pHの回復時に、ほぼ1:1のモル比で血液HCO₃⁻濃度の上昇に伴うCl⁻濃度の低下が起こる。しかし、ヒラメ及びプリを用いた実験では、CO₂レベルがより高くなると血液Na⁺濃度が顕著に上昇する結果が得られた。また、血液pHが回復した後に、実験魚の壊死が起きており、死因として血液pH以外が重要だとと思われる（林・Cuéllar・石松、末発表）。

5. 今後の研究課題

高CO₂環境下での死因を解明すると共に、長期曝露実験による成長、内分泌など幅広い生理機能に対する影響調査を行う必要がある。高CO₂環境下での生理反応は、酸性水に対する反応と全く異なっており、この点に留意して研究を進めるべきである。

文 献

3) 竹田達也、板江清男。二酸化炭素酸性の活魚輸送への応用可能性の検討。水管誌 1983; 49: 725-731.