幅は増加、健足立脚期の割合は急減。両脚支持期は減少、左右差は減少した。立脚期の割合は足前の方が小さくあり、両脚支持期の差は少なかった。歩幅は足前方時の方が小さい。Bobath法

20. 片麻痺歩行の床反力解析-歩行速度の影響

東京慈恵大学整形外科
森田 定雄 山本 晴康 河内 貞臣

我々は力値を用いて片麻痺歩行の床反力解析を行っておりが、今回は歩行速度により床反力がどのような影響を与えるかを検討した。対象は脳卒中片麻痺患者37名、全例步行歩行が一応可能な者である。測定は80cm×4mの床反力計に入力した歩行の床反力を歩行速度を歩行速度にて歩行させ行った。歩行速度は段階的に歩行速度と同じ速度で歩くように指示したfreeと、急で歩くように指示したfastの2種である。

結果：床反力波形の変化は垂直・前後方でピーク値が異なる傾向がみられたが、ピークの数、波形の傾きなどの変化はさほどなく、3分力とも一定の傾向はとらえ難かった。力値ではまず垂直方向において（患側の力値）（健側の力値）の値が歩行速度の増大でその変化にややばらつきはみられたが全体として有意差はみられなかった。力値・作用時間の値は患側、健側ともに歩行速度の増大により各値とも大きな値の変化はなかったが、全体にわずかに増加する傾向を示した。前後力は（駆動成分の力値）（制動成分の力値）の値を求めたところ、患側、健側ともに歩行速度の増大では各例ともあまり変化を示さなかった。側方力では（患側の力値）（作用時間）（健側の力値）（作用時間）の値を求めたが、これも大きな変化はみられなかった。以上のように我々が臨床的に用いている力値による指標は歩行速度の影響をあまり受けない。

質問：塚本リハセンター 田中 繁：通常の歩行速度と、速い速度の2種類でテストを行っているが、その目的は何か、例えば、速くすることにより、片麻痺の歩行の特徴が強調される、というようなことがあるのか。

答：森田 定雄：片麻痺歩行では正常歩行に比しCadenceが小さい例が多いので、Cadenceを補正者に直さない場合、床反力がどのようになるか変化をみたかったため、および昨年本学会で発表したBr. stage と対応のみられた力値を用いたパラメータがいかに変わるか検討した。

質問：中島リハセンター 窪田 俊夫：歩行の条件として、歩き方の指示を具体的にどのようにしておられるか、またなるべく早く歩かせることについての意味はどうでしょうか。

答：森田 定雄：歩行計測時は左右踏フェースの床反力計を用いているので、床反力計の中央にはしたテープを踏まないように歩くよう指示している。

質問：名古屋大 伊藤不二夫：力値では練習が反映されず、特徴が消えると思われるが、いかがか。

答：森田 定雄：床反力波形でspike波が出ても、われわれの力値を用いたパラメータにはあまり反映されないが、すなわち波形の細かい経験は失われるが、歩行評価の定量化には有用な方法と考えている。

21. 床反力からみた片麻痺歩行

国際共同病院 谷村 明徳 野口 雅夫

長崎大学整形外科
藤田 隆章 松坂 誠直 乗松 敏晴

鈴木 良平

目的：床反力からみた歩行能力の評価について検討した。

対象と方法：対象は正常成人20例、片麻痺患者35例（Br. stage VI 13例、VI 12例、V10例）である。方法はア

NII-Electronic Library Service
型が示す面積値を S_{x-y}, S_{x-x} とした。

結果: 正常成人で stage 別片麻痺例の各計測値を比較するとき, 健側, 患者とも stage が高くなることに S_{x-y} 値が増加, X_1, X_2, y 値ともに同様の傾向があった。步行能力の改善した 7 例について, 各計測価の経時的変化をみると, S_{x-y} 値のみが改善に伴い全例増加していった。

考察: S_{x-y} 値と X_1, X_2, y, X_1 との関係は, 各 stage において健側で X_2 値と stage が 3 で健側の X_2 値と 5 で患側の X_2 値と正の相関を示しており, S_{x-y} 値が健側で駆動力と患側で歩行能力の高い 5 では駆動力と V, N では制動力と関係が深いことがわかった。S_{x-y} 値は stage が高くなることに, また歩行能力の改善に伴い増加することを考え合わせると, 片麻痺患者の歩行能力の指標として S_{x-y} 値を用いる可能性が高いと考えられた。

質問: 中島正信: 帝塚で“歩行能力”の定義は何かご存じですか。

質問: 名古屋大 伊藤不二夫: ①S_{x-y} も Br. stage と相関を示すかいかがでしょうか。②Br. stage より程度すると Z-Y は一様性を示すことが多いが, Z_1, Y_1 は一定の傾向がみられた。

質問: 末吉明: ①S_{x-y} 増加の傾向がみられた、S_{x-y} 値の傾向が变异をみた。②一様性で各計測値の求め難いものもある。

22. 種々の歩行における動的足底圧分布 - 携帯型足底圧分布測定装置による検討

滋賀医大整形外科

牧川 昭 新・善孝 萩原 滋

大阪労災病院リハ科 川村 次郎

種々の歩行能力を評価し, 効果予測を判定するためには歩行中に足底にかかる圧の時間的な変化を知ることが重要である。このような観点からここでは近年日常生活に近い状態で歩行機能を観察, 解析しうる携帯型の歩行分析装置を開発し, 日常の種々の場面で足底にかかる圧の分布の時間的な変化について検討を加えた。

ここに開発した携帯型歩行分析装置はアナログ信号記録, 解析専用の小型, 軽量な計算機であり, 一定時間の記録, 解析の後で回収し, ポリソコンピュータに接続することにより, 各種のデータをグラフ, 数値の形で得ることができる。今回は足底圧分布測定センサーとしてひずみゲージ式の薄型圧力センサー（共和電業社製 PS-10KA）を使用し, これを足底の踵, 中足部外側, 五つの中足骨頭, 各趾の 8 ヌ所に貼った。このような方法により靴を履いた状態で, 自然な状態における足底圧分布を動的に記録, 解析することができた。

結果として, まず自然歩行では第 2 中足骨頭に足底中央の最大の圧を認める等, 特殊な步行分析台を用いた場合と同様な結果を得, これまでの結果の有効性を確認した。さらに自然歩行以外の歩行では, ジョギング時に踵への荷重が増大する, 足部外側線アーチの消失を思わせる中足部外側への大きな荷重を認める, 母趾の荷重圧は自然歩行のそれと同程度である等, 特殊な步行分析台では得られない種々の足底圧分布を記録でき, 本手法の有効性を確認した。

質問: 坂田リハセンター 田中 織: センサーの使い方に関する質問である。使用しているセンサーは圧センサーであり, 本来センサー面に一定にしか垂直に力が加わらないと正確な計測はできないが, このような計測で圧センサーを使用することは可能なのか。結果への影響はどうか。

答: 牧川 昭: 力センサーの使用上問題があるところは承知しているが, まだどの程度まで問題にするかは検証していない。現在はむしろ過剰な状況に耐えるセンサーの開発が問題である。

質問: 名古屋大 伊藤不二夫: 通常第 1 趾 MP 部の圧が高いか, 2 または 3 趾にむしろ高い場合もあるようであり, その原因は何かでしょうか。

答: 牧川 昭: 我々は専用の步行分析台を用い, はずり第 1, 第 2 中足骨頭下の圧が最大になることを確認している。今回は第 3 中足骨頭下の圧が最大になる現象がみられたが, 基本的には体重の移動軌跡に対する足のつま先が, 各中足骨頭下の圧が最大になるかを決定しており, 歩き方の違いがこのような結果を生み出したと考えている。