<table>
<thead>
<tr>
<th>Title</th>
<th>Hydrogen Sensing Properties of an Anodized TiO₂ Film Equipped with a Pd-Pt Electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakaoka, Masaki; Hyodo, Takeo; Shimizu, Yasuhiro; Egashira, Makoto</td>
</tr>
<tr>
<td>Citation</td>
<td>ECS Transactions, 16(11), pp.293-299; 2008</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/21898</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Electrochemical Society, Inc. 2008. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in "Hydrogen Sensing Properties of an Anodized TiO₂ Film Equipped with a Pd-Pt Electrode" Masaki Nakaoka, Takeo Hyodo, Yasuhiro Shimizu, and Makoto Egashira, ECS Trans. 16, 293 (2008), DOI:10.1149/1.2981131.</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Hydrogen Sensing Properties of an Anodized TiO₂ Film Equipped with a Pd-Pt Electrode

Masaki Nakaoka¹, Takeo Hyodo¹, Yasuhiro Shimizu² and Makoto Egashira²,*

¹Graduate School of Science and Technology, ²Faculty of Engineering Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
*egashira@nagasaki-u.ac.jp

An anodized TiO₂ sensor equipped with a Pd-Pt electrode was subjected to heat treatment in air (air-treated) and additionally in N₂ (N₂-treated), and then its responses to H₂ balanced with air or N₂ were investigated under dry and wet conditions. Among the conditions tested, the N₂-treated sensor showed the largest H₂ response in dry N₂ atmosphere. But, H₂ response of the air-treated sensor increased with the existence of water vapor, while that of the N₂-treated sensor decreased with the existence of water vapor. As a result, H₂ response of the air-treated sensor in wet air was quite comparable with that of the N₂-treated sensor in wet N₂. Thus, it was revealed that the existence of water vapor reduced the pretreatment- and measurement atmosphere-dependent H₂ response of the sensor.

Introduction

Our previous studies have revealed that a TiO₂ thin film having sub-micron pores could be fabricated by anodic oxidation of a Ti plate, and that the anodized TiO₂ thin film equipped with a Pd top electrode and the Ti plate bottom electrode exhibited high H₂ response in a wide range of H₂ concentration as a diode-type sensor under flowing both air and N₂ atmospheres (1-4). In addition, alloying of Pd with Pt was quite effective in improving the reproducibility of H₂ response and its long-term stability (5-7). In the present study, sensing properties of an anodized TiO₂ sensor equipped with a Pd-Pt alloy top electrode to H₂ balanced with air or N₂ were investigated under dry and wet atmospheres.

Experimental

Preparation and Characterization of an Anodized TiO₂ Thin Film

A half part of a Ti plate (5.0 × 10.0 × 0.5 mm³) was anodically oxidized in a 0.5 M H₂SO₄ aqueous solution at 20°C for 30 min at a current density of 50 mA cm⁻². Microstructure of the anodized film was observed by scanning electron microscopy (SEM; JEOL, JSM-7500F).

Fabrication and Measurement of a Pd-Pt/TiO₂ Sensor

Figure 1 shows schematic drawing of a diode-type sensor fabricated using the anodized TiO₂ thin film and a Pd-Pt (Pd : Pt = 36 : 64 (wt%)) alloy top electrode (Pd-Pt/TiO₂
sensor). The Pd-Pt alloy electrode (3.0 × 3.0 mm²) was fabricated on both the TiO₂ thin film and the Ti plate by radio-frequency magnetron sputtering (Shimadzu, HSR-552S, output power: 300 W(Pd) - 200 W(Pt), sputtering time: 7 min) and the electrical contact to Au lead wires was achieved by application of a Pt paste and then was ensured by subsequent firing at 600°C for 1 h in dry air (air-treated sensor). Thus, the actual electrode configuration was the Pd-Pt/TiO₂/Ti plate. A dc voltage of 1 or 100 mV was applied to the Pd-Pt/TiO₂ sensor under forward bias condition (Pd-Pt(+)-TiO₂-Ti(-)), and the H₂ sensing properties were measured at 250°C to 50~8000 ppm H₂ balanced with air or N₂ under dry and wet conditions (absolute humidity (AH) range: 0~30.4 g m⁻³). The H₂ response properties of the sensor subjected to the additional treatment in dry N₂ at 600°C for 1 h (N₂-treated sensor) were also measured. For easy comparison, air- and N₂-treatments are expressed as T_air and T_N₂, respectively, and measurements in air and in N₂ atmosphere are indicated as M_air and M_N₂, respectively. Current (I)-voltage (V) characteristics of the sensor were measured in a range of -1~1 V.

![Fig. 1 Schematic drawing of a Pd-Pt/TiO₂ sensor.](image)

Results and Discussion

Microstructure of an Anodized TiO₂ Thin Film

Figure 2 shows SEM photographs of the surfaces of a Ti plate, an anodized TiO₂ thin film and the anodized TiO₂ thin film coated with a Pd-Pt alloy electrode. Formation of submicron-sized pores was observed at the surface after the anodic oxidation, as shown in Fig. 2(b). The pore size decreased obviously after the sputtering of the Pd-Pt alloy electrode, as shown in Fig. 2(c).

![Fig. 2 SEM photographs of the surfaces of (a) a Ti plate, (b) an anodized TiO₂ thin film and (c) the anodized TiO₂ thin film coated with a Pd-Pt alloy electrode.](image)
I-V Characteristics of a Pd-Pt/TiO₂ Sensor

Figure 3 shows I-V curves of the Pd-Pt/TiO₂ sensor in 8000 ppm H₂ balanced with air and N₂ at 250°C. A nonlinear I-V curve, which is typical for a diode-type sensor, was observed for the air-treated sensor in dry air, but it changed to an almost ohmic I-V curve in wet air, i.e. current values increased with the existence of water under the forward bias conditions, as shown in Fig. 3(a). On the other hand, the I-V curve for the N₂-treated sensor in dry N₂ showed better linearity than that in dry air, and little change in current was induced by the existence of water in N₂, as shown in Fig. 3(b). It is reasonable to consider that the surface of the Pd-Pt electrode is partially covered with chemisorbed oxygen or partially oxidized in the case of the air-treated sensor. During the H₂ response measurement in dry air (dry environment under the T_air-M_air conditions), it is anticipated that chemisorbed oxygen cannot be consumed completely by the reaction with H₂ (a small but a certain coverage of chemisorbed oxygen is maintained), but almost no oxygen chemisorption may be easily achieved under the H₂ response measurement in dry N₂ (dry environment under the T_N₂-M_N₂ conditions). Thus, it is considered that the chemisorbed oxygen on the electrode contributes to the formation of the Schottky barrier at the interface between the Pd-Pt electrode and the anodized TiO₂ thin film, since the existence of chemisorbed oxygen on the electrode further promotes electron extraction from the anodized TiO₂ thin film than the level expected from the difference between the work function of the electrode and the electron affinity of the anodized TiO₂ thin film. In addition, the results shown in Fig. 3 confirm that the existence of water vapor under the T_air-M_air conditions weakens the above role of chemisorbed oxygen.

![Figure 3](image_url)
Fig. 3 I-V characteristics of a Pd-Pt/TiO₂ sensor in 8000 ppm H₂ balanced with (a) air or (b) N₂ at 250°C. The sensor was pretreated at 600°C for 1 h in (a) dry air and (b) dry N₂. AH: absolute humidity

H₂ Response Properties of a Pd-Pt/TiO₂ Sensor

Figure 4 shows response transients of the Pd-Pt/TiO₂ sensor to 8000 ppm H₂ at 250°C under a forward bias voltage of 1 mV. The air-treated sensor showed very small H₂ response in dry air, as shown in Fig. 4(a) and the N₂-treated sensor showed the largest H₂ response in dry N₂ among the conditions tested, as shown in Fig. 4(b). The H₂ response of the air-treated sensor was increased by the existence of water vapor. In contrast, the H₂ response of the N₂-treated sensor was decreased by the existence of water vapor in this case.
Fig. 4 Response transients of a Pd-Pt/TiO₂ sensor to 8000 ppm H₂ balanced with (a) air or (b) N₂ at 250°C. The sensor was pretreated at 600°C for 1 h in (a) dry air and (b) dry N₂ (applied voltage: 1 mV). AH: absolute humidity

Fig. 5 Variations in (a) sensor current and (b) response and recovery times of a Pd-Pt/TiO₂ sensor in 8000 ppm H₂ operated at 250°C under a forward bias voltage of 1 mV with absolute humidity.

Figure 5(a) depicts the variations in H₂ response of the sensor with absolute humidity in the measurement atmosphere. The magnitude of the H₂ response of the air-treated sensor in wet air was quite comparable to that of the N₂-treated sensor in wet N₂ (a response current range of 3.0~4.5×10⁻⁴ A), and it showed little absolute humidity dependence. Thus, it was revealed that the existence of water vapor reduced the pretreatment- and measurement atmosphere-dependent H₂ response of the sensor. Figure 5(b) shows the variations in response and recovery times of the sensor with absolute humidity in the measurement atmosphere. In dry atmosphere, a longer response time was observed under the Tₐir-Mₐir conditions, in comparison with that under the T₉₂-M₉₂ conditions. This is because the response time under the Tₐir-Mₐir conditions contains the time necessary to remove chemisorbed oxygen to a certain level before the dissociative adsorption of H₂ and subsequent dissolution of H atoms into the electrode which is the main sensing mechanism of this type sensor. On the other hand, the T₉₂-M₉₂ conditions
offered a shorter recovery time than the T_{N2-MN2} conditions, implying that the gaseous oxygen accelerates release of H atoms from the electrode. The response time became longer with the existence of water vapor on the whole under both the T_{air-Mair} and T_{N2-MN2} conditions. Thus, it is obvious that water vapor and/or chemisorbed water molecules on the electrode interfere with the dissociative adsorption of H2 and subsequent dissolution of H atoms into the electrode from the viewpoint of response time. However, the recovery time remained almost unchanged with the existence of water vapor under both the T_{air-Mair} and T_{N2-MN2} conditions.

H2 Concentration Dependence of Response of a Pd-Pt/TiO2 Sensor

The response transients of the Pd-Pt/TiO2 sensor to 50~8000 ppm H2 balanced with dry air and dry N2 under a forward bias voltage of 100 mV are shown in Fig. 6(a). The sensor current decreased drastically with decreasing H2 concentration under the T_{air-Mair} conditions. And then the sensor current in 50~500 ppm H2 became extremely small. In contrast, much larger responses to 50~8000 ppm H2 were observed under the T_{N2-MN2} conditions than the T_{air-Mair} conditions, especially in the H2 concentration range (C_{H2}) less than 500 ppm. In addition, the sensor current in H2 is directly proportional to the H2 concentration under the T_{air-Mair} conditions, while it is proportional to the logarithm of H2 concentration under the T_{N2-MN2} conditions, as shown in Fig. 6(b). From these results, it was confirmed that oxygen in the measurement atmosphere lowered the H2 response, especially in the low concentration range less than 500 ppm.

![Figure 6](image-url)

Fig. 6 (a) Response transients to 50~8000 ppm H2 and (b, c) variations in sensor current of a Pd-Pt/TiO2 sensor to 50~8000 ppm H2 (C_{H2}) in (i) dry air and (ii) dry N2 at 250ºC (applied voltage: 100 mV).
Similar measurements were also conducted with the Pd-Pt/TiO$_2$ sensor to 50–8000 ppm H$_2$ in wet atmosphere (AH: 17.3 g m$^{-3}$), as shown in Fig. 7(a). The sensor current decreased drastically with decreasing H$_2$ concentration in wet atmosphere under both the T$_{\text{air}}$-M$_{\text{air}}$ and T$_{\text{N}_2}$-M$_{\text{N}_2}$ conditions. Especially, the H$_2$ response in the H$_2$ concentration range less than 500 ppm became very small. From the comparison between Figs. 6 and 7, we could confirm the effects of water vapor on the H$_2$ response explained by referring to the results shown in Figs. 5(a) and 5(b), i.e. water vapor enhances the H$_2$ response under the T$_{\text{air}}$-M$_{\text{air}}$ conditions, but reduce the H$_2$ response under the T$_{\text{N}_2}$-M$_{\text{N}_2}$ conditions, over the whole H$_2$ concentration range studied. In addition, it was found that the sensor current in wet H$_2$ atmosphere was well proportional to the logarithm of H$_2$ concentration under the T$_{\text{air}}$-M$_{\text{air}}$ conditions (1000–8000 ppm) and the T$_{\text{N}_2}$-M$_{\text{N}_2}$ conditions (500–8000 ppm), as shown in Fig. 7(b). This behavior is similar to that observed under the dry T$_{\text{N}_2}$-M$_{\text{N}_2}$ conditions shown in Fig. 6(c) in all the H$_2$ concentration range, but the slope of the current in H$_2$ under the wet T$_{\text{air}}$-M$_{\text{air}}$ conditions is apparently smaller than that under the T$_{\text{N}_2}$-M$_{\text{N}_2}$ conditions in the H$_2$ concentration range higher than 1000 ppm. Under both T$_{\text{air}}$-M$_{\text{air}}$ and T$_{\text{N}_2}$-M$_{\text{N}_2}$ conditions the sensor showed very small H$_2$ responses in the H$_2$ concentration range less than 500 ppm H$_2$. Poor linearities were observed between the sensor current and the H$_2$ concentration under both the T$_{\text{air}}$-M$_{\text{air}}$ and T$_{\text{N}_2}$-M$_{\text{N}_2}$ conditions, as shown in Fig. 7(c). Thus, water vapor may induce a similar effect to that of oxygen from a view point of H$_2$ sensing mechanism, more precisely the H$_2$ concentration dependence of response, though the details are not clarified yet.

Fig. 7 (a) Response transients and (b–c) variations in sensor current of a Pd-Pt/TiO$_2$ sensor to 50–8000 ppm H$_2$ (C$_{\text{H}_2}$) in (i) wet air and (ii) wet N$_2$ (AH: 17.3 g m$^{-3}$) at 250ºC (applied voltage: 100 mV).
Conclusions

H₂ sensing properties of an anodized TiO₂ sensor equipped with a Pd-Pt alloy top electrode were investigated in air and N₂ under dry and wet conditions. It was revealed that the existence of water vapor reduced the influence of pretreatment- and measurement atmosphere-dependent H₂ sensing properties of the anodized Pd-Pt/TiO₂ sensor. It is also suggested that the H₂ sensing mechanism is affected by oxygen as well as water vapor.

Acknowledgments

The present work was partly supported by Grant-in-Aid for Scientific Research (B) (No. 18360333) from Japan Society for the Promotion of Science.

References