<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ティト</td>
<td>二機二軸二舵船「鶴洋丸」の旋回性能に関する考察</td>
</tr>
<tr>
<td>作者</td>
<td>兼原 寿生</td>
</tr>
<tr>
<td>発行</td>
<td>長崎大学水産学部研究報告 v.90, pp.1-7; 2009</td>
</tr>
<tr>
<td>発行日</td>
<td>2009-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/22282</td>
</tr>
</tbody>
</table>
二機二軸二舵船「鶴洋丸」の旋回性能に関する考察

兼原 憲生，内田 淳，青島 隆，木下 宰，島田亜加里，高山 久明

A Study on the Turning Ability of Twin-engine, Twin-propeller, and Twin-rudder Ship "KAKUYO MARU"

Hisso Kanahara, Jun Uchida, Takashi Aoshima, Tsukasa Kinoshita, Akari Shimada and Hisaaki Takayama

We made the turning trial of 'KAKUYO MARU', which was equipped with two engines, two propellers and two rudders, to find out the steady turning diameter, the turning time and the turning speed reduction ratio.

The results of trial are stated below.
1) The size of steady turning diameter depended on the rudder angle and was little affected by the turning speed.
2) The ratio of the steady turning diameter to the ship length between perpendiculars (D/L) was inversely proportional to the rudder angle, and its regression formula was expressed as \(y = \frac{20.361}{x^{1.388}} \).
3) The turning time was inversely proportional to the rudder angle and the turning speed, and its regression formula at 10 degrees of rudder angle was expressed as \(y \tau = 453.17x^{0.397} \).
4) The turning speed reduction ratio changed in proportion to the rudder angle and was almost constant even though the turning speed changed.
5) In comparing the measured D/L values by turning speed and rudder angle with Sugihara’s nomogram values, the error between measured values and nomogram values was 13.6% at most. Accordingly, Sugihara’s nomogram can be applied to a twin-engine, twin-propeller, and twin-rudder ship also.
6) As for the effect of ship’s bottom fouling on the turning diameter, the steady turning diameter varied inversely with the period elapsed from the last bottom cleaning in a dock, and its regression formula at 10 and 20 degrees of rudder angle were expressed as \(y \tau = -0.6313x^{-2} - 0.7471x + 394.8 \) and \(y \tau = -0.6529x^{2} + 4.2921x + 189.4 \) respectively.

Key Words: 定常旋回径 Steady turning diameter, ノモグラム nomogram, 減速率 turning speed reduction ratio

実験方法

1) 供試船「鶴洋丸」の主要目
供試船「鶴洋丸」の主要目をTable 1に示す。
2) 実験の方法

旋回試験の各要件は、以下の通り設定した。
(1) 主機関回転数による船速 4 種（極低速（DS/H）：575rpm，低速（L/H）：950rpm，中速（H/H）：1200rpm 及び高速（F/H）：1700rpm)
(2) 舵角 4 種（5, 10, 20及び30°）
(3) 旋回方向 2 種（左及び右旋回）
(4) 進入針路 2 種（南の0度又は180°と東西の90又は270°の組合せ）

実船試験は、(1)~(4)の組合せで2006年5月、11月及び
Table 1. Principal particulars of "KAKUYO MARU"

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length over all</td>
<td>42.78m</td>
</tr>
<tr>
<td>Length register</td>
<td>35.43m</td>
</tr>
<tr>
<td>Length between perpendiculars</td>
<td>34.50m</td>
</tr>
<tr>
<td>Breadth (molded)</td>
<td>7.00m</td>
</tr>
<tr>
<td>Depth (molded)</td>
<td>3.19m</td>
</tr>
<tr>
<td>Draft designed (molded)</td>
<td>2.50m</td>
</tr>
<tr>
<td>Gross tonnage</td>
<td>155t</td>
</tr>
<tr>
<td>Main engine</td>
<td>1.050kW (1,428PS) x 2</td>
</tr>
<tr>
<td>Propeller</td>
<td>Fixed 5 blades x 2</td>
</tr>
<tr>
<td>Area of Rudder</td>
<td>1.28m² x 2</td>
</tr>
</tbody>
</table>

2007年4月，11月に実施し、船首は、DGPSを用いて船首方位、船速とともに1秒毎に記録した。

解析の方法
1秒毎に収録した船位データを基に旋回図を描くと共に、
定常旋回図は船首方位が135°回頭時と315°回頭時の船首により旋回速度線図を求める。本報での定常旋回図の定義は、船首方位が135°回頭時の船首と315°回頭時の船首間の距離を、Fig. 1に示した最終旋回径に当たる部分である。又、旋回所要時間は船首の180°回頭への所要時間（秒）とした。旋回船速は135°、225°及び315°回頭時のDGPS船速を平均して求め、定常旋回計測時の減速率は、減速率－旋回船速／初期×100とした。

Fig. 1 Name of each part of turning circle

4）ノモグラム作成の方法
杉原のノモグラムは、定常旋回径（D）と船の垂線間長（Lpp）との比である定常旋回径比（D/Lpp）を求めるもので、ノモグラム作成に必要な諸要素は、次の7つの要素である。

(1) 船体積比（A/Ld）⁻¹（A：船体積，Ld：垂線間長，d：平均吃水）
(2) 船角 α
(3) 方形係数 Cb
(4) トリム比 t/L（t：トリム，ご洋丸の平均トリム = 1.15m）
(5) 速度変力比 k
(6) 速度長さ比 V/L
(7) 旋回角速度係数 m²

上記要素のうち(1)～(4)は船の静的条件であり、実験時の船のコンディションによるもので、個々の実験において変化はないが、(5)～(7)は旋回に伴う船の動的条件であり、各実験において変化するものでその要素は次式で求めた。

速度変力比：k = 1.0 - 0.8 • Cb • (A/Ld) + 4.5 • (L/L)
速度長さ比：V/L = V/O/L

旋回角速度係数：m² = (0.46 + V/O/L - 0.38) • sin α + 0.11

以上の諸要素を基に、Fig. 2 に示す杉原のノモグラム上のD/Lの値に読み取り算定値とした。

Fig. 2 Nomogram creation procedure and its factors

Table 2 の船角30°、船首 H/H を例に D/L を読み取り場合、その手順は次の通りである。
① Fig. 2 の左端の(A/Ld)⁻¹上の値30°とαの値30°を結び、その延長線を助助尺を交わらせた、
② ①で得た助助尺（I）の交点と Cb 曲線上の値0.518を結び、助助尺（II）で交わらせると
③ ②と同様に助助尺（II）の交点と t/L 曲線上の値0.033を結び、k 値上の交点を求める。
④ k 値の交点と V/L 曲線の値1.97を結び、その延長線を助助尺（III）で交わらせた。

Table 2. Nomogram factors of "KAKUYO MARU"
Fig. 2 の右側の V_i 倍の上より等高線を引く。
その延長を m で交わらせる。

次に円弧から得た直線の上記の点を図 2 の下の直線の点と等高線を引く。
その結果、円弧の延長を m とした。

実測値とノンモデル計算値の誤差（%）は、誤差＝実測値－計算値／計算値×100とした。

結果及び考察

旋回実験実施時期の海域及び気象条件と実験回数は Table 3 の通りである。

Table 3. Time, area, and weather condition of turning trial and number of trials

<table>
<thead>
<tr>
<th>Time</th>
<th>Area</th>
<th>Average wind direction & wind speed (m/s)</th>
<th>Number of trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2006</td>
<td>Off Wakamatsuki & Misaki</td>
<td>WSW 2.5</td>
<td>48</td>
</tr>
<tr>
<td>November 2006</td>
<td>Off Fukushima & Nagashiki</td>
<td>South 2.6</td>
<td>44</td>
</tr>
<tr>
<td>April 2007</td>
<td>Off Fukushima & Shimizu</td>
<td>NW 8.7</td>
<td>64</td>
</tr>
<tr>
<td>November 2007</td>
<td>Off Wakamatsuki</td>
<td>NE 9.2</td>
<td>38</td>
</tr>
</tbody>
</table>

1）定常旋回径と定常旋回時減速率

本実験では、定常旋回面に対する風流の影響を最小限にとどめる目を目的として、各船速及真船角に、及び旋回速度 2 種と左右旋回の実験を行ったが、試験船が二船軸二船船（外周）であり、直進時における風流変化は殆どないことから、定常旋回径の大きさ及び導入に対する定常旋回時の減速率（以下、減速率と称す）は、船速別、船角別に計算した。左右旋回径の平均値を用いた。

（1）2006年 5 月の実験

2006年 5 月の実験を Table 4 に示す。実験の船速は、真船速、中速及び高速の 4 種、船角は 10°及 20°の 2 種の船角で計 36 回の旋回実験を行い、各船角を用いた定常旋回径、360°旋回所要時間（以下、所要時間と称す）及び減速率を示した。Fig. 3 は定常旋回径の大きさを船角別に比較し船速毎の回転曲線を示したものである。横軸に船角、縦軸に定常旋回径の大きさを示しており、パラメータは 4 種の船速である。船角が大くなると定常旋回径の大きさは反比例して小さくなるが、船速以外の条件は一定である。船角 10°で 935.4m～390.5m（平均 377m）、20°で 79.9m～203.3m（平均 188.8m）であった。一方、船角による影響は大きく、通常最も使用頻度の高い真船角 10°の定常旋回径に対して 20°ではその 0.5%であった。Fig. 3 に示している実験は船速及び中速の回転曲線であり、それぞれ、 y_{max} = 703.72x $^{1.889}$, y_{min} = 745.96x $^{0.599}$で表された。また、各船角における減速率の平均は船角 10°で平均 101.1%，20°で 117.2%であった。

（2）2006年 11 月の実験

2006年 11 月の実験を Table 5 に示す。実験の船速のうち真船速、中速及び高速については 10°、20°の 2 種、減速率及び中速については 10°、20°及び 30°の 3 種の船角の組合せで計 48 回の旋回実験を行い、各船角度、減速率を示した。Fig. 4 は定常旋回径の大きさを船角別に比較し船速毎の回転曲線を示したもので、パラメータは 4 種の船角を設定した。

Table 4. Steady turning diameter, time of turning and speed deduction ratio while turning (in May 2006)

<table>
<thead>
<tr>
<th>Class of ship speed</th>
<th>Rudder angle (degree)</th>
<th>Steady turning diameter (m)</th>
<th>Time for turning (min)</th>
<th>Initial ship speed (knot)</th>
<th>Speed deduction ratio while turning (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS/H</td>
<td>10</td>
<td>435.1</td>
<td>56</td>
<td>-</td>
<td>95.5</td>
</tr>
<tr>
<td>S/H</td>
<td>10</td>
<td>240.3</td>
<td>4.7</td>
<td>-</td>
<td>91.7</td>
</tr>
<tr>
<td>H/H</td>
<td>10</td>
<td>90.8</td>
<td>9.0</td>
<td>-</td>
<td>91.1</td>
</tr>
<tr>
<td>F/H</td>
<td>10</td>
<td>63.4</td>
<td>6.0</td>
<td>-</td>
<td>85.6</td>
</tr>
</tbody>
</table>

Table 5. Steady turning diameter, time of turning and speed deduction ratio while turning (in November 2006)

<table>
<thead>
<tr>
<th>Class of ship speed</th>
<th>Rudder angle (degree)</th>
<th>Steady turning diameter (m)</th>
<th>Time for turning (min)</th>
<th>Initial ship speed (knot)</th>
<th>Speed deduction ratio while turning (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS/H</td>
<td>10</td>
<td>435.1</td>
<td>56</td>
<td>-</td>
<td>95.5</td>
</tr>
<tr>
<td>S/H</td>
<td>10</td>
<td>240.3</td>
<td>4.7</td>
<td>-</td>
<td>91.7</td>
</tr>
<tr>
<td>H/H</td>
<td>10</td>
<td>90.8</td>
<td>9.0</td>
<td>-</td>
<td>91.1</td>
</tr>
<tr>
<td>F/H</td>
<td>10</td>
<td>63.4</td>
<td>6.0</td>
<td>-</td>
<td>85.6</td>
</tr>
</tbody>
</table>

Fig. 3 Steady turning diameter by ship speed and rudder angle (in May 2006 when 6 months after docking)
Table 6. Steady turning diameter, time of turning and speed deduction ratio while turning (in April 2007)

<table>
<thead>
<tr>
<th>Class of ship speed</th>
<th>Rudder angle (degree)</th>
<th>Steady turning diameter (m)</th>
<th>Time for turning (s)</th>
<th>Initial ship speed (kn)</th>
<th>Speed deduction ratio while turning (kn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS/H</td>
<td>5</td>
<td>519.2</td>
<td>84.3</td>
<td>10.5</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>398.5</td>
<td>59.5</td>
<td>11.9</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>±5</td>
<td>218.4</td>
<td>49.1</td>
<td>14.9</td>
<td>9.3</td>
</tr>
<tr>
<td>S/H</td>
<td>5</td>
<td>620.3</td>
<td>79.5</td>
<td>13.2</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>455.8</td>
<td>55.0</td>
<td>16.7</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>±5</td>
<td>318.9</td>
<td>47.1</td>
<td>19.7</td>
<td>9.7</td>
</tr>
<tr>
<td>H/H</td>
<td>5</td>
<td>710.7</td>
<td>99.0</td>
<td>17.2</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>585.6</td>
<td>85.1</td>
<td>19.3</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>±5</td>
<td>387.5</td>
<td>69.5</td>
<td>21.8</td>
<td>10.7</td>
</tr>
<tr>
<td>F/H</td>
<td>5</td>
<td>720.3</td>
<td>100.3</td>
<td>20.0</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>595.5</td>
<td>85.5</td>
<td>21.5</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>±5</td>
<td>385.0</td>
<td>69.0</td>
<td>21.7</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Fig. 4 Steady turning diameter by the ship speed and rudder angle (in November 2006 when 12 months after docking)

Fig. 5 Steady turning diameter by ship speed and rudder angle (in April 2007 when 2 months after docking)

Fig. 6 Steady turning diameter by ship speed and rudder angle (in November 2007 when 9 months after docking)

100°で98.9%、20°で92.0%、30°で89.9%であった。Fig. 5 に示しているものは、極速及び中速時の回転曲線であり、それぞれ、Y_{max} = 783.31x^{-0.352} および Y_{max} = 723.50x^{-0.98} のことが示される。

また、各舵角における減速率の平均は舵角10°で97.0%，10°で94.4%，20°で95.4%である。

(4) 2007年11月の実験
2007年11月の実験をTable 7 に示す。実験の船速のうち極速は舵角5°、極速及び中速は舵角30°、20°及び10°の3種、高速は舵角30°及び20°の組合せで計36回の試験を行い、

Table 7. Steady turning diameter, time of turning and speed deduction ratio while turning (in November 2007)

<table>
<thead>
<tr>
<th>Class of ship speed</th>
<th>Rudder angle (degree)</th>
<th>Steady turning diameter (m)</th>
<th>Time for turning (s)</th>
<th>Initial ship speed (kn)</th>
<th>Speed deduction ratio while turning (kn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS/H</td>
<td>5</td>
<td>520.3</td>
<td>84.3</td>
<td>10.5</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>398.5</td>
<td>59.5</td>
<td>11.9</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>±5</td>
<td>218.4</td>
<td>49.1</td>
<td>14.9</td>
<td>9.3</td>
</tr>
<tr>
<td>S/H</td>
<td>5</td>
<td>620.3</td>
<td>79.5</td>
<td>13.2</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>455.8</td>
<td>55.0</td>
<td>16.7</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>±5</td>
<td>318.9</td>
<td>47.1</td>
<td>19.7</td>
<td>9.7</td>
</tr>
<tr>
<td>H/H</td>
<td>5</td>
<td>710.7</td>
<td>99.0</td>
<td>17.2</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>585.6</td>
<td>85.1</td>
<td>19.3</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>±5</td>
<td>387.5</td>
<td>69.5</td>
<td>21.8</td>
<td>10.7</td>
</tr>
<tr>
<td>F/H</td>
<td>5</td>
<td>720.3</td>
<td>100.3</td>
<td>20.0</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>595.5</td>
<td>85.5</td>
<td>21.5</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>±5</td>
<td>385.0</td>
<td>69.0</td>
<td>21.7</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Fig. 6 Steady turning diameter by ship speed and rudder angle (in November 2007 when 9 months after docking)
各組合せによる定常旋回側、所要時間及び減速率を示した。Fig. 6 は定常旋回側の大きさを舵角別に比較し船速每の回帰曲線を示したものである。定常旋回側の大きさは、舵角10°で94.0 Railway (平均94.80m), 20°で179.5m(平均188.3m)、30°で117.3m(平均120.8m)であり、舵角10°の定常旋回側に対して20°で53.5%, 30°で34.8％であった。Fig. 6 に示している図は微幅及び中速の回帰式であり、それぞれ、\(y_{\text{mw}} = 668.95x^{0.829} \)、\(y_{\text{mw}} = 672.40x^{0.829} \)で表された。また、各船角における減速率の平均は舵角10°で93.1%, 20°で82.3%及び30°で67.1%であった。

Fig. 6 は上記4期全図において各組合せの平均減速を舵角別に比較し、同船速での回帰曲線を示したものです。図は横轴に舵角、縦軸に減速を示しており、パラメータは各船速である。減速は舵角が大きくなると反比例的に小さくなるが、船速による変化は殆ど無く、同一船角ではほぼ変わらないことが判る。Fig. 7 の中の回帰式は、舵角別4種の船速における減速率の平均値の回帰式であり、

\[
y = -0.5973x^2 - 1.9253x + 99.864
\]

Fig. 7 Relation between rudder angle and speed reduction ratio at steady turning

2）360°旋回所要時間

Table 4～7 中の所要時間は、船速別、舵角別に進入船速2種、左右旋回別2種の平均値を示したが、Fig. 8 は各時期を比較した各平均所要時間を船速別に比較し、舵角毎の回帰式を示したものです。横軸に船速、縦軸に所要時間を表示しており、パラメータは15°～30°の各船角である。図から旋回の所要時間は船速に反比例して小さくなり、同一船速では舵角が大きくなるほど時間がかかることが判る。図中の回帰式はそれぞれの舵角の船速の所要時間、

\[
y = 869.27x^{0.783} \]

\[
y = 447.32x^{0.783} \]

\[
y = 271.61x^{0.783} \]

\[
y = 218.21x^{0.783} \]

で示された。各船形の最適船速は船速30°の所要時間で2.8%であり、最大は船角30°の微幅時で13.6%であった。

Fig. 8 Relation between ship speed by rudder angle and time for turning 360 degrees

3）定常旋回側

Fig. 9 は鶴洋丸の舵角別定常旋回側（D/L）の回帰式を示したもので、横軸は船速、縦軸は定常旋回側があり、図中の式は定常旋回側の回帰式

\[
y = 20.36x^{-1.5021} \]

の最大船速は35°であるが、実験時の最大船速は30°とした。船速30°までの定常旋回側は船速の大きさにほど反比例することが判る。

Fig. 9 Ratio of steady turning diameter to ship length (Lpp) by rudder angle

4）ノモグラム

ノモグラムは船の静的条件及び動的条件を知ることで定常旋回側を求めて定常旋回側を推定する手法である。Table 2 は桜丸の例に従って鶴洋丸のノモグラム作成に必要な要因を示したものである。

データは全データを舵角別、船速別に左右旋回2種と進入船速2種を平均して用い、進路のうち静的条件は各旋回を10°Cの極限条件で実施したため、船の静的条件は一定であり、動的条件は舵角別、船速別に進行船速3種（Vx）の平均値を用いて、速度差比（k）と速度差比（Vx）及び旋回角速度係数（m）を求めた。しかし、組合せのうち、舵角0°時船速方面の一部が桜丸のノモグラムの尺度上に載らなかったため、算定値は10°、20°及び30°の3種の船速と3種の船速（30°の高速は未実施）に対する値を使用して取り扱った。

Table 8 は鶴洋丸のD/L実測値とノモグラム算定値を比較したものである。D/L実測値は算定値と同様、舵角10°、20°及び30°で示し、中速及び高速の船速3種について左右旋回及び全て東北、北の進入船速2種の組合せで平均値を用いて算出した。この結果、誤差の最小は舵角30°の高速で2.8%であり、最大は舵角30°微幅時の微幅で13.6%であった。
5）水線下船底の汚れによる定常旋回径への影響
水線下船底の汚れはドックの壁洗いから時間を経たに従い増大する。2006年5月から2007年11月に実施した4回の実験時期をドックからの経過月数とすると、2006年5月が0ヶ月、2006年11月が1ヶ月、2007年4月が2ヶ月及び2007年11月が9ヶ月である。

Table 9はドックからの経過月数別に行った4回の調査について、舵角別、船速別の定常旋回径を、所要時間、減速率及び定常旋回径比（D/L）を平均して示している。この表からのどの船速においても、経過月数に反比例して定常旋回径、所要時間及び減速率は小さくなっていることが判る。さらに、この表のうち4期をすべてで実験を実施した舵角10°及び20°の微速、中速及び高速の船速について定常旋回径の大きさを比較した。

Fig.10は舵角10°及び20°でのドックからの経過月数と定常旋回径の関係を示したもので、横軸は経過月数、縦軸は定常旋回径でパラメータは船速である。アミラ合金船用船底ペイントは自己研磨型であり、その効果は約6ヶ月間で、その後は効果の低下が急速に大きくなるといわれている。舵角10°では経過月数2ヶ月の定常旋回径を100とした場合、船速3節の平均における経過月数の定常旋回径は6ヶ月で94.1%（約3.8m減少）、9ヶ月で86.8%（約5m減少）及び12ヶ月で77.8%（約8m減少）と経過月数に反比例して小さくなり、従ってその減速率は正比例して大きくなった。図中の回帰式は船速パラメータとしたもので、舵角10°の平均の回帰式は
\[Y = 0.6313X^2 - 0.7471X + 394.76 \]
で表された。

また、舵角20°では、経過月数2ヶ月の定常旋回径を100とした場合、船速3節の平均における経過月数の定常旋回径は6ヶ月で94.4%（約1.2m減少）、9ヶ月で92.3%（約15.5m減少）及び12ヶ月で78.4%（約43.2m減少）と舵角10°の場合と同様の傾向を示し、3つの船速平均の回帰式は、
\[Y = 0.6562X^2 + 4.2321X + 189.4 \]
で表された。

Table 9. Steady turning diameter, time for turning, and speed deduction ratio while turning by rudder angle and months elapsed from docking

<table>
<thead>
<tr>
<th>Rudder angle (degrees)</th>
<th>Class of ship speed</th>
<th>Steady turning diameter (m)</th>
<th>Speed deduction rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time of trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Fig.10 Relation between months elapsed from docking and steady turning diameter
Table 10. Nomogram factors of "KOYO MARU"

<table>
<thead>
<tr>
<th>θ (degrees)</th>
<th>θp (m)</th>
<th>a(m)</th>
<th>Db</th>
<th>Lp</th>
<th>Vp</th>
<th>Vb</th>
<th>(A/L)d</th>
<th>m</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>77.5</td>
<td>2891</td>
<td>5.21</td>
<td>0.53</td>
<td>0.066</td>
<td>18</td>
<td>2.04</td>
<td>55.1</td>
<td>0.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measured D/L</th>
<th>Nomogram calculation</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.05</td>
<td>2.03</td>
<td>12.56</td>
</tr>
</tbody>
</table>

12ヶ月の定常旋回試験が著しく減少する結果となった。これは同一時期での主機回転数による航速の変化とは異なり、同一の主機回転数により船の当たるプロペラ流速であるにもかかわらず、水の粘性と船体浸水表面の摩擦抵抗の増加により前進力が減少したことが大きな要因であると考えられる。

6）最近の一機一軸船へのノモグラムの適用
次に鶴洋丸以外の最近の建造船でノモグラムの適用性を調べた。二機二軸二船の鶴洋丸とは異なるが、2007年6月29日に竣工した独立行政法人水産大学校の一機一軸一船船の練習船「耕洋丸」のノモグラムを作成した。Table 10は「耕洋丸」のノモグラム作成に必要な船体諸要素及びD/L実測値と算定値である。その結果、実測値の2.66に対して算定値は3.03でD/Lの誤差は12.56%となり、杉原のノモグラムは十分適用しているといえる。

おわりに
以上の旋回試験の解析により、定常旋回時の大きさは舵角により決まり、航速にあまり影響されず、定常旋回比(D/L)は舵角の大きさにはほぼ反比例することが判った。同時に、定常旋回時航速も舵角の大きさにはほぼ反比例するが、航速による影響は殆どないことも判った。また、所要時間は航速にほぼ反比例して小さくなり、同一航速では舵角に反比例して小さくなった。
ノモグラムによる定常旋回比の算定において、二機二軸二船の鶴洋丸では、小角10°から大角度30°の範囲まで実測値と算定値の誤差が15%以内に収まり、各種航速で十分適用可能であった。また、最近建造された水産大学校の練習船「耕洋丸」の同様の計算においても誤差が15.58%であり、40数年前に杉原が提案したノモグラムは現在の船に対しても二機二軸二船に対しても十分適用可能であることが判った。

以上のデータが定常旋回に与える影響において、定常旋回を所要時間はドックからの経過月数に反比例して小さくなり、航速の違いによる航速比にはあまり影響を与えないことが判った。
本実験試験は、いずれも満載出港状態で行ったが、今後船体コンディション変化に対する旋回性能及びそのノモグラムの対応など鶴洋丸の諸性能の把握に努め、一層の航海の安全に貢献したいと考える。

謝辞
本研究において、独立行政法人水産大学校漁業練習船「耕洋丸」のノモグラム作成に必要な船体諸要素等のデータをご提供頂いた、下川伸也先生にお礼申し上げます。また、平成18年度4年次生、高橋裕氏にお礼申し上げます。

文献
1）杉原喜義：日本航海学会論文集34、31-35(1986).
2）杉原喜義(1967)：理論運用学（船体運動編）、71-119頁、海文堂、東京
3）航海ハンドブック編集委員会編（1981）：新訂航海ハンドブック、223-225頁、成山堂書店、東京
4）木村啓之輔（1986）：操船速論、16-33頁、成山堂書店、東京
5）渡口正人：独立行政法人水産大学校漁業練習船“耕洋丸”，海洋水産エンジニアリング、74、22-41(2007).