<table>
<thead>
<tr>
<th>Title</th>
<th>AFRICAN ENDEMIC-TYPE KAPOSI’S SARCOMA - A HISTOPATHOLOGIC STUDY AND FLOW CYTOMETRIC DNA ANALYSIS OF NINE CASES -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Eto, Hideaki; Toriyama, Kan; Itakura, Hideyo; Tagawa, Yutaka; Kamidigo, Noah O.</td>
</tr>
<tr>
<td>Citation</td>
<td>日本熱帯医学会雑誌, vol.20(2), pp.129-134; 1992</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-06-15</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/22403</td>
</tr>
</tbody>
</table>
AFRICAN ENDEMIC-TYPE KAPOSI'S SARCOMA — A HISTOPATHOLOGIC STUDY AND FLOW CYTOMETRIC DNA ANALYSIS OF NINE CASES —

HIDEAKI ETO 1,*, KAN TORIYAMA 1, HIDEYO ITAKURA 1, YUTAKA TAGAWA 2 AND NOAH O. KAMIDIGO 3

Received February 5 1992/Accepted March 14 1992

Abstract: Flow cytometric DNA analysis using formalin-fixed, paraffin-embedded tissues were performed on nine cases of African endemic-type Kaposi's sarcoma (KS). Histologically, these cases were classified into the following three types; granulation tissue-like (one case), angioma/angiosarcoma-like (four cases) and spindle cell (four cases). Although these three types showed a variety of cellularity and cellular atypism, there were no fundamental differences in the view point of proliferation of spindle cell. Mitotic figures were not prominent. All cases were exclusively diploid and lacked an aneuploid population by flow cytometric measurement of DNA content. These results suggest that African endemic-type KS is a less aggressive disease rather than a malignant neoplasm.

INTRODUCTION

Kaposi's sarcoma (KS) was first described by Kaposi (1872) as an "Idiopathic multiple pigmented sarcoma of the skin". Since then, many cases of KS have been reported in European, American and African countries. Recently, it has been observed frequently in patients with acquired immune deficiency syndrome (AIDS).

KS is broadly classified into four categories; classical (European) type, African endemic-type, AIDS-related type and the type associated with immunosuppressive therapy. The clinical manifestations of these types are not necessarily same (Safai, 1985; Itakura et al., 1986). Furthermore, African endemic-type KS is divided into cutaneous form and lymph node form by the affected site (Toriyama et al., 1987a, b). Generally, cutaneous KS is long standing, spontaneously regressive, and not fatal. On the other hand, lymph node KS mainly occurs in children, and shows an aggressive clinical course similar to that of adult AIDS patients (Olweny et al., 1976; Bayley, 1983). However, it has been reported that twenty-seven years was the longest duration of lymph node KS following initial diagnosis in childhood (Dutz and Stout, 1960). The true nature of KS including histogenesis has been widely discussed, but still remains obscure.

Flow cytometric measurement of DNA content has been increasingly used as an objec-

1 Department of Pathology, Institute of Tropical Medicine, Nagasaki University, 12-4 Sakamoto-machi, Nagasaki 852, Japan (corresponding author)
2 First Department of Surgery, Nagasaki University School of Medicine, 7-1 Sakamoto-machi, Nagasaki 852, Japan
3 Histology Department, Rift Valley Provincial Hospital, P.O.Box 71, Nakuru, Kenya
tive determinant of biological behavior and prognosis in certain solid neoplasms. Abnormal DNA ploidy appears to indicate poor prognosis in various malignant tumors (Hedley et al., 1985; Merkel et al., 1987; Kiyabu et al., 1988; Stanley et al., 1988). However, there have been few flow cytometric studies of KS. We have performed flow cytometric DNA analysis of paraffin-embedded tissues of African endemic-type KS, and discussed the relationship between histological findings and DNA ploidy.

MATERIALS AND METHODS

Materials:

Nine cases of KS obtained from 1986 to 1989 in Provincial General Hospitals in Nakuru and Kisumu, the Republic of Kenya, were examined. Clinical data and relevant information were recorded as accurately as possible.

Histopathologic studies:

For light microscopic examination, each specimen was prepared with hematoxylin-eosin stain (H.E.), periodic acid–Schiff reaction, Azan-Mallory’s stain and silver impregnation for reticulin fibers. Histological growth pattern, cellularity, cellular atypism and mitotic rate (per 10 high power fields; ×400) were determined.

Flow Cytometry:

The technique of Schutte (1985) for DNA analysis was employed using the formalin-fixed, paraffin-embedded tissues. In brief, single cell suspension was obtained by mechanical and enzymatic treatment of three or four 50 μm paraffin sections of each specimen, and stained with propidium iodide. Cellular DNA content was measured by a FACScan equipped with an argon laser. The excitation wavelength was 488 nm. The number of cells in each measurement was at least 2×10^4. The coefficient of variation (CV) of the diploid peak ranged from 4.0 to 8.7. To confirm the presence of the lesion in sections used for DNA analysis, we cut further 4 μm sections adjacent to the analyzed sections from each specimen. They were stained with hematoxylin-eosin and examined to reconfirm the histological diagnosis and features.

RESULTS

The clinical manifestation, histologic features and DNA ploidy in the nine cases were summarized in Table 1. The age of these patients ranged from 18 to 56 years (mean 40 years). All patients were male. Eight of the nine cases occurred in the skin of the lower extremities. One case occurred in the lymph nodes of the upper arm.

According to the predominant histological features, three main types of growth were recognized. One case was classified as the granulation tissue-like type. This was characterized by an angioproliferative process with an inflammatory cell infiltration, but was less cellular than the other two types (Fig. 1). Four cases were angioma/angiosarcoma-like type. The lesions were composed predominantly of well-formed vascular spaces, with slit-like or anastomosing vasculature similar to that seen in angiosarcoma, but with minimal cellular atypism (Fig. 2). Four cases were spindle cell type. This type showed a high cellularity, but its cellular atypism and mitotic figures were not prominent (Fig. 3). Transitional zones and intermingling of these three types were also frequently observed in the same case. Mitotic
Table 1 Clinical manifestation, histologic features and DNA ploidy of African endemic-type Kaposi's sarcoma

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yr)</th>
<th>Sex</th>
<th>Site of location</th>
<th>Histological type</th>
<th>Cellularity</th>
<th>Cellular atypism</th>
<th>Mitotic rate (per 10 HPFs)</th>
<th>DNA ploidy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>M</td>
<td>Skin (leg)</td>
<td>S</td>
<td>+++</td>
<td>+</td>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>M</td>
<td>Skin (limb)</td>
<td>S</td>
<td>+++</td>
<td>+</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>U</td>
<td>M</td>
<td>Skin (leg)</td>
<td>A</td>
<td>++</td>
<td>+</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>M</td>
<td>Skin (leg)</td>
<td>A</td>
<td>++</td>
<td>+</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>M</td>
<td>Skin (limb)</td>
<td>S</td>
<td>+++</td>
<td>+</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>M</td>
<td>Skin (foot)</td>
<td>A</td>
<td>++</td>
<td>+</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>M</td>
<td>Skin (knee)</td>
<td>A</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>M</td>
<td>Skin (leg)</td>
<td>G</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>M</td>
<td>Lymph node (upper arm)</td>
<td>S</td>
<td>+++</td>
<td>+</td>
<td>8</td>
<td>D</td>
</tr>
</tbody>
</table>

U: unknown; G: granulation tissue-like type; A: angioma/angiosarcoma-like type; S: spindle cell type; HPF: high power field; D: diploid

Mitotic rate ranged from 0 to 8 per 10 high-power fields (×400).

All cases were diploid by flow cytometric measurement of DNA content.

DISCUSSION

Many studies have been performed about the histogenesis of KS, such as vascular endothelial cell (Hashimoto et al., 1987; Scully et al., 1988), lymphatic endothelial cell (Beckstead et al., 1985; Dictor and Anderson, 1988) and mesenchymal cell (Komuro and Toriyama, 1991). Some immune factors with angiogenic activity, such as thymosin, interferon, lymphokines and prostaglandin, are thought to be crucial to the development of KS (Levy

Figure 1 (left) Case 8 (granulation tissue-like type). The lesion is characterized by an angioproliferative process with an inflammatory cell infiltration (H.E., ×100). (right) DNA histogram showing diploidy (CV 8.2).
Figure 2 (left) Case 6 (angioma/angiosarcoma-like type). The lesion is composed predominantly of anastomosing vascular channels and well-formed vessels (H.E., ×100). (right) DNA histogram showing diploidy (CV 7.7).

Figure 3 (left) Case 9 (spindle cell type). The lesion is formed by interlacing bundles of spindle shaped cells (H.E., ×100). (right) DNA histogram showing diploidy (CV 4.0).

African endemic-type KS is usually divided into cutaneous form and lymph node form by the affected site (Toriyama et al., 1987a, b). Generally, cutaneous KS usually occurs in lower extremities of adults, and is long standing, growing slowly and occasionally regressive (Itakura et al., 1986). On the other hand, lymph node KS mainly occurs in children without cutaneous lesions, and shows an aggressive clinical course with generalized lesions often involving the visceral organs similar to that of adult AIDS patients (Olweny et al., 1976; Bayley, 1984). However, it has been reported that twenty-seven years was the longest duration of lymph node KS following initial diagnosis in childhood (Dutz and Stout, 1960).

In this study, African endemic-type KS was histologically classified into the following three types; granulation-tissue like type, angioma/angiosarcoma like type and spindle cell type. Transitional zones and intermingling of these three types were also frequently observed.

and Ziegler, 1983). However, the true nature of KS, whether hyperplasia or neoplasia, remains unknown (Costa and Rabson, 1983; Brooks, 1986; Mirra, 1986).
in the same case. Although these three types showed a variety of cellularity and cellular atypism, there were no fundamental differences in the view point of proliferation of spindle cell. Mitotic figures were not prominent.

Recently, DNA ploidy analysis by flow cytometry has shown that DNA aneuploidy is common in several malignant tumors and is a useful prognostic indicator (Hedley et al., 1985; Merkel et al., 1987; Kiyabu et al., 1988; Stanly et al., 1988). However, there has been no flow cytometric studies of African endemic-type Kaposi's sarcoma. In our study, all cases of African endemic-type KS were exclusively diploid and lacked an aneuploid population by flow cytometric measurement of DNA content. Histological appearance and DNA ploidy of lymph node KS were identical with cutaneous KS. These results are consistent with the reported findings in AIDS-related type KS cases (Fukunaga and Silverberg, 1990). Although there are no sufficient follow-up studies, our results suggest that African endemic-type KS is a less aggressive disease rather than a malignant neoplasm.

REFERENCES

アフリカ風土型カポシ肉腫
—— 9例における病理組織学的検討ならびにフローサイトメトリー法による核DNA量解析 ——

江藤 秀顕1・鳥山 寛1・板倉 英寿1・
田川 科2・Noah O. KAMIDIGO3

カポシ肉腫（Kaposi's sarcoma, KS）は一般には、欧米古典型、アフリカ風土型、AIDS関連型、その他の免疫不全型の4型に大別され、さらにアフリカ風土型KSは、発生部位により皮膚型とリンパ節型に分けられている。それぞれの型において若干の病態的な差異が認められているが、その組織発生を含め本態は未だ不明のことが多い。最近ではフローサイトメトリー（FCM）法による核DNA量解析が腫瘍、あるいは腫瘍様病変の悪性度評価に、広く用いられている。今回9例のアフリカ風土型KSにおいて、病理組織学的検討、ならびにホルマリン固定、バラフィン包埋ブロックを用いたFCM法による、核DNA量解析を行った。組織学的には次の3型に分けられた。すなわち肉芽組織類似型（1例）、血管瘤あるいは血管肉腫類似型（4例）と紺線形細胞型（4例）である。これら3型においては、細胞密度や細胞異型に程度の差はあるものの、紺線形細胞の増殖という点からは、基本的な差は見られなかった。核分裂像も目立たなかった。FCM法による核DNA量では、全例がdiploidを示しており、aneuploid例は見られなかった。これらの結果より、アフリカ風土型KSは悪性腫瘍というより、むしろless aggressiveな病変であると思われた。

1 長崎大学歯科医学研究所病理学部門（〒852 長崎市坂本町12-4）
2 長崎大学大学医学部第一外科学教室
3 リフトパレール州立病院、ケニア