<table>
<thead>
<tr>
<th>Title</th>
<th>An LED Drive Circuit with Constant-Output-Current Control and Constant-Luminance Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nishikawa, Masahiro; Ishizuka, Yoichi; Matsuo, Hirofumi; Shigematsu, Koichi</td>
</tr>
<tr>
<td>Citation</td>
<td>International Telecommunications Energy Conference, pp.1-6; 2006</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/22596</td>
</tr>
</tbody>
</table>

©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
An LED Drive Circuit with Constant-Output-Current Control and Constant-Luminance Control

Masahiro Nishikawa†, Yoichi Ishizuka†, Hirofumi Matsuo† and Koichi Shigematsu††
Nagasaki University†, Nagasaki, Japan Ansoft Japan††, Kanagawa, Japan

Abstract - A Single LED is very small, and their luminance is related to the amount of driving current. Sufficient luminance for an illuminator requires many LEDs to be connected together and a constant current supplied to each LED. Therefore, the LED drive circuit must have constant-output-current control and/or constant-luminance control. We propose an LED drive circuit that consists of a boost-type DC-DC converter with constant-output-current control and constant-luminance control. This circuit is a switching regulator-type circuit controlled by pulse width modulation (PWM). Both the power and the constant-current control can be provided by a single system, without any ballast resistor or auxiliary current control circuit.

I. INTRODUCTION

The light emitting diode (LED) has been drawing attention as a state-of-the-art illuminator. Advancements in bright-LED-fabrication processes, device designs and assembly technologies have led to an increase in the performance of LEDs and a reduction in cost.

Single LEDs are very small, and their luminance is related to the amount of driving current. To obtain sufficient luminance for an illuminator, a number of LEDs must be connected together and a constant current must be supplied to each LED belonging to an array. However, the total voltage and total current of a serial connection varies, depending on the occurrence of short-circuit LED breakdowns. Consequently, the LED drive circuit must have constant-output-current control and/or constant-luminance control.

An LED drive circuit is proposed, which consists of a boost-type DC-DC converter with constant-output-current control and constant-luminance control. This circuit is a switching regulator-type circuit controlled by pulse width modulation (PWM). Both the power and the constant-current control can be provided using photodiodes.

In section II, the electrical properties and the type of connection for the LEDs are described. In section III, the proposed driving circuit method is introduced. Section IV provides the experimental and simulation results.

II. THE ELECTRICAL PROPERTIES OF THE LED

A. The Electrical Properties of the LEDs

Fig. 1 shows the forward current and luminance versus the forward voltage characteristics of the LED (NSPW500BS) used in these experiments. The forward current begins to flow at a forward voltage of 2.6 V. The forward current increases with an increase in the forward voltage within the range of the maximum ratings for the forward current. Luminance also increases in proportion to an increase of the forward current.

B. Type of Connection for the LEDs

Generally, a single LED is very small. To obtain sufficient luminance for an illuminator, many LEDs must be connected together, and a constant current supplied to each LED. There are two types of connection, n-paralleled connection and series connection, as shown in Figs. 2 and 3, respectively.

In Fig. 2, \(R_{pk} \) is the ballast resistance, and \(I_{Fpk} \) is the drive current of LED \(k \) and is represented as:

\[
I_{Fpk} = \frac{E_i - V_{Fk}}{R_{pk}}.
\]

From (1), it can be seen that each \(I_i \) cannot have an equivalent value when each \(R_{pk} \) has a deviation. In addition, the value of the ballast resistance is increased in proportion to the number of LEDs.

In Fig. 3, \(E_i \) is the input voltage, \(E_o \) is the output voltage, \(D_1 \) to \(D_n \) represent the single LEDs, \(I_F \) is the drive current, \(V_{F} \) is the forward voltage of the LEDs and \(R_{bs} \) is the ballast resistance. \(I_i \) is represented as:

\[
I_i = \frac{E_i - \sum_{k=1}^{n} V_{Fk}}{R_{bs}}.
\]

Fig. 1. \(I_F \) and \(F \) versus \(V_F \) (White LED: NSPW500BS)
From (2), it can be seen that the drive current I_f must be an equivalent value even if E_i, V_f, and R_{bs} have some deviation. Therefore, a series connection is more effective as the drive circuit for lighting, because of the stability of the brightness for each LED.

However, the total voltage and total current of a serial connection varies depending on the occurrence of short-circuit breakdown of LEDs. Such an occurrence affects the change of luminance of the LEDs. In a worst case scenario, the LEDs will continuously breakdown.

Considering this, an active constant current compensation circuit is definite requirement for a series connection driving circuit.

C. Relation of Luminous Efficiency and Temperature

One of the advantages of LEDs is long life superiority over fluorescent and incandescent lamps. However, the luminous efficiency is decreased by device deterioration due to ageing. The luminous efficiency is also changed by internal and external temperatures. Although the luminance of LEDs is related to the amount of driving current, the luminance is also changed by the environment. To confirm this problem, constant temperature experiments were performed.

10 LEDs were connected in series with ballast resistance; the same configuration as shown in Fig. 3. Figs. 4 and 5 show the variation in the voltage of the ballast resistance V_{Rs} = 10 Ω, the output voltage E_o, drive current I_f and the luminance of the LEDs as a function of operation time.

The results indicate that E_o is decreased by 0.06 V after ten minutes has passed. The average error for E_o was 0.17%.

I_r, with an initial value of 20 mA, became 26.01 mA after ten minutes. The luminance, which was initially 7080 lx, became 8080 lx after ten minutes. The luminance increase of approximately 1000 lx is proportional to the increase of I_f. Therefore, it is apparent that the forward voltage V_f is changed by the internal temperature of LEDs with a continuous driving current. The overcurrent of I_r occurs with a decrease in V_r. In addition, V_{Rs}, which was initially 204 mV, became 259 mV after ten minutes, an increase of approximately 55 mV. Therefore, it is seen that the ballast resistance does not suppress a decrease of V_r caused by the LEDs internal temperature change. Consequently, a current compensation circuit is effective for constant current flow, regardless of a decrease in V_r from internal temperature change or short circuiting of LEDs.

III. PROPOSED DRIVING CIRCUIT METHOD

A. Circuit Conditions

We propose an LED drive circuit that consists of a boost-type DC-DC converter with constant-output-current control and constant-luminance control as a drive circuit for lighting that uses LEDs with the features shown in section II. With this drive circuit, a system becomes small and lightweight, and has high efficiency. Current compensation is also realized. In this section, the composition and operation of a boost-type DC-DC converter with constant-output-current control and the constant-luminance control circuit are given.
Fig. 6 shows a boost-type DC-DC converter with constant-output-current control, where S is the switch, D is the diode, L is the inductor, C is the output capacitor, D, to D, are n single white LEDs, R1 is the current detection resistance, R2 is the resistance that divides the output voltage Eo, IF is the drive current, VFn is the forward voltage of the LEDs and VRd and VR2 are the voltages of Rd and R2. In this study, the following assumptions were determined for the analysis.

(1) L and C are assumed to be sufficiently large. The DC power voltage ripple of the voltage and the current is disregarded.

(2) The forward voltage and forward resistance of diode D is assumed to be 0, and the backward resistance is assumed to be infinite. D is turned on by a positive voltage and turned off by zero or negative voltage. The recovery time is assumed to be zero.

(3) Parasitic resistance and capacitance of transistor S is assumed to be zero. The turn-on voltage and resistance is assumed to be zero. The turn-off resistance is assumed to be zero. The turn-on time and the turn-off time are disregarded, assuming that they are very small compared with the on-term and the off-term period.

(4) The relation of internal loss r, and inductance L, is determined by the following conditions, where f is the switching frequency.

\[fL \geq r \]

(3)

B. Constant-output-current control of a boost-type DC-DC converter

In the drive circuit used in this research, output-current is detected by the resistance R1. The equation is derived with respect to the constant-output-current control coefficient. Ei is the mean value of en, and is represented as follows:

\[E_i = E_{\text{dc}} = V_{Rd} - V_{R2} \]

(4)

where \(V_{Rd} \) and \(V_{R2} \) are the voltages of \(R_d \) and \(R_2 \).

C. The Constant-Output-Current Control Coefficient and Output Characteristics

Fig. 7 shows the proposed constant-output-current control circuit. In this circuit, the duty ratio D, is represented by the following equation.

\[D = \frac{V_i}{E_{\text{dc}}} = H_c \cdot E_i + E_B \]

(5)

where \(E_{\text{dc}} \) is the reference voltage and \(H_c \) is a coefficient. \(V_i \) has a saw-tooth-like amplitude, and is represented as follows:

\[V_i = \frac{R_{i1}}{R_{i2}} \cdot E_{\text{dc}} + E_B \]

(6)

\(E_B \) is the bias voltage and determines the ratings value of \(I_f \), and is represented as follows

\[E_x = I_f \left(\frac{R_s}{R_1} \right) \left(\frac{R_c + R_s + I_f - E_x}{R_1 + R_c \cdot H_c \cdot E_x} \right) \left(\frac{R_s + I_f \cdot H_c \cdot E_x}{R_1 + R_c \cdot H_c \cdot E_x} \right) \]

(7)

In OP1, the constant current signal \(E_i \) is detected and the signal \(E_i \) is output. \(E_i \) is represented by the following equation.

\[E_i = \left(\frac{R_{i1}}{R_{i2}} \right) \cdot E_x \]

(8)

where \(R_{i1} \) is the direct-current gain in the constant-current control circuit.

In OP2, \(E_i \) is adjusted in the bias with \(E_n \) and the resulting \(E_x \) is output. For a saw-tooth oscillation circuit, a saw-tooth wave of amplitude \(V_s \) is output. For COMP1, the pulse width is determined by comparing \(V_s \) with \(E_{\text{dc}} \).
Hc is represented by the following control equation.

\[H_c = \frac{R_{i1}}{E_{DC}} \cdot \frac{R_{i2}}{G} \cdot \frac{R_{i3} + R_{i4}}{I_F} \cdot \frac{G - I}{I_F} \cdot \frac{E_{i*} - E_{o*}}{E_{i*}} \]

(9)

From (5) and (9), it is apparent that a constant current is supplied to the LED by pulse width modulation (PWM).

E_{i*} is the ratings output voltage of a boost-type DC-DC converter and is represented by the following equation.

\[I - \frac{I_F}{I} = \frac{G - I}{r + R_s \cdot (1 + E_{i*} \cdot H_c - G)} \cdot \frac{E_{i*} - E_{o*}}{I_F} \]

(10)

where G is the constant-output-current control coefficient, and is represented as follows:

\[G = E_{i*} \cdot H_c \cdot \frac{R_s}{r + R_s} \cdot \frac{R_{i3}}{R_F} \cdot \frac{R_{i4}}{R_F} \]

(11)

In (9), the relation between I_{i*} and I_{o*} is represented by the following equation.

\[I - \frac{I_{o*}}{I_{i*}} = \frac{G - I}{r + R_s \cdot (1 + E_{i*} \cdot H_c - G)} \cdot \frac{E_{i*}}{I_{i*}} \]

(12)

where I_{i*} is the ratings output current of a boost-type DC-DC converter and I_{o*} is the short-circuit current when E_{o*} = 0 for I_{i*}.

In (12), the right hand side of the equation becomes 0 at G = 1. Therefore, I_{i*} = I_{o*} and this is assumed to be a constant-output-current characteristic. The right hand side of (12) becomes positive at G>1, and I_{i*} < I_{o*} with this assumed to be a fall-back characteristic. The right hand side of (12) becomes positive at G<1, with I_{i*} > I_{o*}, and is assumed to be a drooping characteristic. Therefore, controlling the inclination of the current becomes possible by causing G to change, where G is defined as the constant-output-current control coefficient.

D. Constant-Luminance Control of a Boost-Type DC-DC Converter

The luminance of LEDs is related to the amount of driving current. Therefore, stabilization of luminance can be performed by controlling the amount of flow of driving current. In section III C, it was shown that control of the driving current by causing G to change can stabilize the luminance.

Fig. 8 shows a constant-luminance control circuit. In this study, constant-luminance control using the current control method with a photodiode, which is a semiconductor element that converts light into current, is examined.

In this method, the luminance of LEDs is converted into current and detected as a voltage E_{p1}. The value of E_{p1} is amplified by an error amplifier and is fed back to the voltage E_{DC} of the constant-output-current control circuit. At OP3, the voltage E_{p1} is reversed to E_{p2}. At OP4, the difference between

IV. EXPERIMENTAL AND SIMULATION RESULTS

In this section, the control scheme is described precisely and simulation with Ansoft Simplorer and experimental results are used to clarify the validity of the drive circuit. The maximum number of LED is assumed to be 10, and Table 1 shows the parameter values at G = 1. Ef is determined with disregard for r given in (7).

Fig. 9 shows I_{i*} versus the number of LEDs. For the experimental and the simulated results, a constant current is achieved at a rated current of 20 mA without dependence on the number of LEDs between 5 and 10. The average error is 0.2%, and the maximum error was 1% for an array of 8 LEDs. Fig. 10 shows power efficiency η, versus the number of LEDs. The average power efficiency is over 90%, and the maximum power efficiency is 93.4% for an array of 5 LEDs.

Fig. 11 shows the drive current, I_{i*}, versus the number of LEDs in constant-current control mode and constant-luminance mode. Fig. 12 shows the luminance versus the number of LEDs in constant-current control mode and constant-luminance mode. Considering both Figs. 11 and 12 together suggests that constant-luminance control allows adjustment of the luminance by linear control of I_{i*}. The average error of luminance was within 1.5% and the maximum error was 3% for an array of 9 LEDs.
V. CONCLUSION

An LED drive circuit that consists of a boost-type DC-DC converter with constant-output-current control and constant-luminance control is proposed. The results are concluded as follows:

(1) A switching power supply method is used, resulting in low power consumption and high efficiency.

(2) The ability to supply a constant current to each LED, regardless of the number of changes of LEDs at G=1 was confirmed by both experiment and simulation.

(3) Luminance can be constantly maintained for a photodiode by current control, and the change in luminance controlled under certain conditions.

In addition, the proposed circuit provides high power efficiency.

The luminous efficiency of LEDs is affected by the temperature. Therefore, future research will focus on the development of a drive circuit for high luminance efficiency and avoidance of internal temperature rises. In addition, digital control will be examined.

Table I

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E[V]</td>
<td>12</td>
</tr>
<tr>
<td>E_s[V]</td>
<td>36</td>
</tr>
<tr>
<td>I_s[mA]</td>
<td>20</td>
</tr>
<tr>
<td>f_s[kHz]</td>
<td>100</td>
</tr>
<tr>
<td>R_s[Ω]</td>
<td>10</td>
</tr>
<tr>
<td>L[mH]</td>
<td>1</td>
</tr>
<tr>
<td>C[μF]</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
</tr>
<tr>
<td>R1[Ω]</td>
<td>1</td>
</tr>
<tr>
<td>R2[Ω]</td>
<td>119</td>
</tr>
<tr>
<td>R3[Ω]</td>
<td>10</td>
</tr>
<tr>
<td>R4[Ω]</td>
<td>100</td>
</tr>
<tr>
<td>E_p[V]</td>
<td>2</td>
</tr>
<tr>
<td>E_pc[V]</td>
<td>1</td>
</tr>
<tr>
<td>E_dc[V]</td>
<td>1</td>
</tr>
<tr>
<td>R[Ω]</td>
<td>100</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

This work was supported in part by the Grant-in-Aid for Scientific Research (No.16560246) of Japan Society for the Promotion of Science and the Ministry of Education, Science, Sports and Culture.

REFERENCES

