Novel Composite Resonance DC-DC Converter with Voltage Doubler Rectifier

Hisatsugu KATO1,2, Hirohumi MATSUO1, Masaki EGUCHI3, Yukitaka SAKAMOTO2, Masaki NAKAISHI2

1Nagasaki University
2Tabuchi Electric Co., LTD
3Sharp Corporation
E-mail: h.kato@zbr.co.jp

Abstract—This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficiency 96.1% can be realized.

I. INTRODUCTION

Recently, there is an increasing spread in the photovoltaic generation system [1,2] all over the world because many persons are interested in the clean energy system from the viewpoint of the ecological problem. In this paper, a novel composite resonance DC-DC converter is proposed and developed, in which the current and voltage resonances [3-5] and the voltage doubler rectifier are employed as the power conditioner of the photovoltaic generation system. The output voltage can be regulated for the large variations of the input voltage and load because of the current and voltage resonance circuits. Also, the high power efficiency can be achieved by using not only the composite resonance but also the voltage doubler rectifier. Furthermore, the burst oscillation control is used to improve the power efficiency under the condition that the input voltage is high and the load is light.

II. CIRCUIT CONFIGURATION

Fig. 2.1 shows the proposed composite resonance DC-DC converter with the voltage doubler rectifier, in which the current and voltage resonance circuits are employed. In this figure, Q1 and Q2 are main switches of IGBTs. C_v and C_i are the voltage and current resonance capacitors. L_1 and L_2 are inductances of the primary and secondary windings of the transformer T. The leakage inductance L_i is used, which exists between the primary and secondary windings of T. The voltage doubler rectifier is composed of the diodes D1 and D2, and capacitances C_d and C_o. The IGBT switches Q1 and Q2 are turned-on and turned-off alternatively. There exists the short dead time between the on-times of Q1 and Q2.

![Fig. 2.1 Proposed voltage and current resonance DC-DC converter with the voltage doubler rectifier.](image)

III. STATE OF OPERATION AND OPERATIONAL MODE

(A) Operational Mode 1

STATE: 1

![Fig. 3.1 Operational Mode 1](image)

The current I_{c2} flowing in the IGBT switch Q2 is in the state of the current resonance by capacitance C_i and inductance L_i. At this time, on the secondary side, diode D1 is on and the charge is charged to capacitance C_d for the voltage doubler. From state-1, the input voltage and primary winding current become the next expressions.
\[V_i = (L_i + L_1) \frac{dI_1}{dt} + V_{Ci} \quad 3-(1) \]
\[I_i = C_i \frac{dV_{Ci}}{dt} \quad 3-(2) \]

From these expressions, primary windings current and the voltage across current resonance capacitance \(C_i \) become the next expressions.

\[I_i = \frac{V_i}{Z_1} \sin \omega_i t \quad 3-(3) \]
\[V_{Ci} = V_i (1 - \cos \omega_i t) \quad 3-(4) \]

Moreover the secondary windings current and the voltage across capacitance \(C_d \) for the voltage doubler become the next expressions.

\[I_2 = C_d \frac{dV_{Cd}}{dt} \quad 3-(5) \]
\[V_{Cd} = -L_2 \frac{dI_2}{dt} \quad 3-(6) \]

\(\omega i \) and \(Z_i \) are as follows.

\[\omega i = \frac{1}{\sqrt{(L_i + L_1)C_i}} \quad 3-(7) \]
\[Z_i = \frac{(L_i + L_1)}{C_i} \quad 3-(8) \]

STATE-2

As well as state-1, it is in the state of the current resonance by capacitance \(C_i \) and inductance \(L_1 \). However, diode \(D1 \) is off by charge charged capacitance \(C_d \), and the current doesn’t flow to the secondary side. As a result, the change disappears almost as for the voltage and the current on the primary side.

STATE-3

The IGBT switch \(Q2 \) is off, and the voltage \(V_{CE1} \) between the drain and the source is in the state of the voltage resonance by the capacitance \(C_v \) and the self-inductance of transformer connected with the IGBT switch \(Q2 \) in parallel. The voltage across voltage resonance capacitor \(C_v \) and the primary winding current become the next expressions.

\[V_{Ce} = (L_i + L_1) \frac{dI_1}{dt} + V_{Ci} \quad 3-(9) \]
\[I_1 = -C_v \frac{dV_{Ce}}{dt} \quad 3-(10) \]

From these expressions, the voltage across capacitance \(C_v \) becomes the next expression.

\[V_{Ce} = V_{Ci} \omega_i \sin \omega_i t \quad 3-(11) \]

It is understood that it is in the state of the voltage resonance from this expression.

\(\omega i \) is as follow.

\[\omega_i = \frac{1}{\sqrt{(L_i + L_1)C_v}} \quad 3-(12) \]

STATE-4

The state of the voltage resonance works end, and the diode \(D1 \) and \(D2 \) are on. The period of these, the state-3 and the state-4 are the dead time. And the voltage of \(V_{CE1} \) turns and after it becomes zero volt, the IGBT switch \(Q2 \) is on and it is in the state of zero voltage switching.

STATE-5

The state of the voltage resonance works end, and the diode \(D1 \) and \(D2 \) are on. The period of these, the state-3 and the state-4 are the dead time. And the voltage of \(V_{CE1} \) turns and after it becomes zero volt, the IGBT switch \(Q2 \) is on and it is in the state of zero voltage switching.
The IGBT switches Q2 and diode D2 are on and on the primary side, the charge charged capacitance \(C_i \) is discharged as a result, it is in the state of the current resonance by the leakage inductance \(L_i \). And on the secondary side, the charge charged capacitance \(C_d \) for the voltage doubler flows into the output. At this time, the secondary output voltage and the secondary winding current become the next expressions.

\[
V_O = L_2 \frac{dI_2}{dt} + V_{Cd} \\
I_2 = C_d \frac{dV_{Cd}}{dt}
\]

From these expressions, the secondary winding current becomes the next expression.

\[
I_2 = \frac{V_O}{Z_2} \sin \omega_2 t
\]

On the secondary side, it is understood that it is in the state of the current resonance from this expression. \(Z_2 \) and \(\omega_2 \) are as follows.

\[
Z_2 = \sqrt{\frac{L_2}{C_d}} \\
\omega_2 = \frac{1}{\sqrt{L_2 C_d}}
\]

STATE-6

The diode D2 is off by the charge charged capacitance \(C_o \), and the secondary winding current \(I_2 \) doesn’t flow.

STATE-7

All of IGBTs and diodes are off, and it is in the state of the voltage resonance by capacitance \(C_v \).

STATE-8

Only DQ2 and D1 are on and it is in the state of zero voltage switching.

(B) Operational Mode 2

In the state-1 and the state-5 of Fig.3.2, the same circuit as the state-1 and the state-5 of operational mode 1 operate.

STATE-9

Only DQ1 and D1 are turned-on, it is in the voltage resonance by the capacitance \(C_v \).

STATE-10

Only DQ1 and D2 are on, and it is in the voltage resonance.
Fig. 3.2 Simulation waveforms of operational mode 1
Fig. 3.3 Simulation waveforms of operational mode 2
IV. COMPARISON BETWEEN MEASURING WAVEFORM AND SIMULATION RESULT

Fig. 4.1 shows the simulation and observed waveforms. It is seen in Fig. 4.1 that the simulation result is agreed well with the observed one.

Fig. 4.1 Simulation and observed waveforms

- Q1 Vgs: 10V/div
- Q2 Vgs: 10V/div
- Q1 Vce: 200V/div
- Q1 Ic1: 20A/div
- Q2 Vce: 200V/div
- Q2 Ic2: 20A/div
- Voltage across Ci: 100V/div
- Primary winding current: 50A/div
- Primary winding voltage: 200V/div
- Secondary winding voltage: 200V/div
- Secondary winding current: 20A/div
- Voltage across secondary diode D1: 200V/div
- Current through Cv: 20A/div
V. POWER EFFICIENCY

(A) Under Heavy-Load Condition

Fig.5.1 shows the power efficiency characteristics under the heavy-load of the proposed DC-DC converter. The maximum power efficiency is 95.7% at 230V DC of the input voltage and 900W of the output power.

(B) Under Light-Load Condition

Under the condition that the input voltage is high and the load is light, the burst oscillation control is used to improve the power efficiency and to expand the sphere of control. Fig.5.2 shows the power efficiency characteristics under the light-load of the proposed DC-DC converter. The maximum power efficiency is 95.2% at 240V DC of the input voltage and 400W of the output power and is 93.2% at 300V DC of the input voltage and 200W of the output power. The drop of the efficiency at 200W of the output can be improved by adjusting the burst oscillation condition.

VI. CONCLUSION

It proposed a novel composite resonance DC-DC converter with the voltage rectifier for the power conditioner of the photovoltaic generation system. The maximum power efficiency 96.1% can be realized at 290V DC of the output voltage and 600W of the output power.

REFERENCES

Fig. 5.2 Power Efficiency Characteristics (light-load)