A toxicoproteomic study on cardioprotective effects of pre-administration of docetaxel in a mouse model of adriamycin-induced cardiotoxicity.

Ohyama, Kaname; Tomonari, Mari; Ichibangase, Tomoko; To, Hideto; Kishikawa, Naoya; Nakashima, Kenichiro; Imai, Kazuhiro; Kuroda, Naotaka

Biochemical pharmacology, 80(4), pp.540-547; 2010

Copyright © 2010 Elsevier Inc. All rights reserved.
A toxicoproteomic study on cardioprotective effects of pre-administration of docetaxel in a mouse model of adriamycin-induced cardiotoxicity

Kaname Ohyamaa,b,*, Mari Tomonaric, Tomoko Ichibangased, Hideto Toc, Naoya Kishikawaa, Kenichiro Nakashimae, Kazuhiro Imaid, and Naotaka Kurodaa

aDepartment of Environmental and Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan

bNagasaki University Strategy for Fostering Young Scientists, Nagasaki, Japan

cDepartment of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan

dResearch Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, Japan

eDepartment of Clinical Pharmacy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan

*Corresponding author. Department of Environmental and Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
Tel/Fax: +81-95-819-2446; E-mail: k-ohyama@nagasaki-u.ac.jp
Abstract

Studies suggest that pre-administration of docetaxel (DOC) in a driamycin (ADR)-DOC combination anticancer therapy results in stronger antitumor effects and fewer ADR-induced cardiotoxic deaths in mouse model, yet no mechanism explaining this effect has been established. The aim of this study was to identify cellular processes in mouse heart tissue affected by different ADR/DOC dosing protocols using a toxicoproteomic approach. We applied fluorogenic-derivatization liquid chromatography tandem mass spectrometry (FD-LC-MS/MS) - which consists of fluorogenic derivatization, separation and fluorescence detection by LC, and identification by LC-tandem mass spectrometry - to the proteomic analysis of heart tissue from control, intermittent-dosing (DOC-ADR), and simultaneous-dosing (ADR&DOC) groups. In DOC-ADR group, ADR was administered 12 h after DOC injection; in ADR&DOC group, both drugs were administered simultaneously; in control group, saline was administered at the same timing as ADR injection of other groups. Heart samples were isolated from all mice 1 week after the treatment. The highly reproducible and sensitive method (FD-LC-MS/MS) identified nine proteins that were differentially expressed in heart tissue of control and the two treatment groups; seven of these nine proteins participate in cellular energy production pathways, including glycolysis, the tricarboxylic acid cycle, and the mitochondrial electron transport chain. Significantly higher expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was observed in the DOC-ADR group, the group with the fewer cardiotoxic deaths, than in the ADR&DOC group. Therefore, GAPDH may have potential as a drug target for protective intervention and a biomarker for...
evaluation of the cardioprotective effects in pre-clinical studies.

Keywords: adriamycin-induced cardiotoxicity; docetaxel re-administration; fluorogenic derivatization-liquid chromatography tandem mass spectrometry; toxicoproteomics
1. Introduction

Although adriamycin (ADR) is an anthracycline anticancer drug that has been widely applied in treating a range of cancers (e.g., lymphoma, leukemia, breast cancer, and ovarian cancer), severe cardiotoxicity and heart failure have been observed in ADR-treated cancer patients [1]. In clinical trials for metastatic breast cancer, an ADR and docetaxel (DOC) combination therapy is much more effective than the previous combination therapies (i.e., ADR-cyclophosphamide and fluorouracil-ADR-cyclophosphamide) [2, 3]. However, severe toxicities including myelosuppression and cardiotoxicity limit the clinical use of ADR/DOC combination therapy in many patients with breast cancer [2-4].

Many attempts have been made to reduce the adverse effects induced by anticancer drugs, and one such approach has been chronotherapy. Chronotherapy is defined as the administration of medications using biological rhythms to optimize therapeutic outcomes and/or control adverse effect. The chronopharmacology of many antitumor drugs have been studied in human and animals specifically to decrease adverse effects [5-16]. The individual toxicities of ADR and DOC apparently depend on dosing time in animals and human [8-13]. Among the chronopharmacologic studies, To and colleagues reported that the DOC-pretreated group, in which ADR was administered 12 h after DOC injection, exhibited not only stronger inhibition of tumor growth but also a significant reduction in cardiotoxic deaths compared with all the other co-administration groups and with the ADR-alone group in mice [14]. This remarkable finding has been subsequently studied in detail using mouse models [15, 16], and the reduction in toxic death was found to be DOC dose-dependent [16]; however, no
mechanism explaining the effect of DOC pre-administration has been established.

Proteomics is the large-scale study of gene expression at the protein level and provides information on dynamic cellular performance. As an integration of proteomics, toxicology, and bioinformatics, toxicoproteomics mainly focuses on protein changes in cells or tissues with exposure to toxicants, including antitumor drugs [17, 18].

In proteomic studies, comparative expression profiling of proteins has usually been performed using two-dimensional electrophoresis (2-DE) because this has been the method of choice. However, the 2-DE method has some drawbacks with regard to the reproducibility of the data. Importantly, 2-DE often cannot reproducibly resolve minute differences in protein expression levels between samples from different treatment groups. In an effort to overcome the limitation of 2-DE, Imai and colleagues developed an easily reproducible and highly sensitive proteomic approach, fluorogenic derivatization-liquid chromatography tandem mass spectrometry (FD-LC-MS/MS) method [19, 20]. This method involves fluorogenic derivatization of proteins, followed by high performance liquid chromatography (HPLC) of the derivatized proteins, isolation of those proteins with differential expression between the treatment groups, enzymatic digestion of the isolated proteins, and identification of the isolated proteins utilizing LC-tandem MS with a database-searching algorithm. This method enables highly sensitive detection and high resolution of proteins at the femtomol level due to the fluorogenic derivatization which utilizes a non-fluorescent reagent to yield highly fluorescent products. The applicability of the method has been demonstrated in the analyses of extracts from Caenorhabditis elegans, mouse liver, breast cancer cell lines, mouse
brain, and thoroughbred horse skeletal muscle, revealing the proteins related to early stage Parkinson’s disease, hepatocarcinogenesis, metastatic breast cancer, aging, and training effects, respectively [21-26].

The aim of this study was to identify the cellular processes affected by the pre-administration of DOC in ADR/DOC combination therapies using a toxicoproteomic approach based on FD-LC-MS/MS. The present study reported the differential analysis of mouse heart tissues isolated from control, intermittent-dosing (DOC-ADR), and simultaneous-dosing (ADR&DOC) groups.

2. Material and methods

2.1. Preparation of dosing drugs

ADR, supplied by Kyowa Hakko Kogyo Co., Ltd. (Tokyo, Japan), was dissolved in saline; the concentration was 2 mg/ml. DOC (Taxotere®, Sanofi-aventis, Bridgewater, NJ, USA) was dissolved in ethanol; 5% glucose in water was added to obtain the ratio of ethanol and glucose solution (3:97, v/v) and the final concentration of DOC was 1.25 mg/ml.

2.2 Animal treatment and tissue processing

Male ICR mice (5-weeks old) were purchased from Japan SLC (Nagasaki, Japan). Mice were housed 3-4 per cage under standardized light-dark cycle conditions (light on 7:00 to 19:00) at a room temperature of 24 ± 1°C with free access to food and water. Animal care and experimental procedures were performed in accordance with the Guide for the Care and
Use of Laboratory Animals (National Institute of Health) with approval from the Institutional Animal Care and Use Committee of Graduate School of Biomedical Sciences, Nagasaki University. Mice were divided into the intermittent-dosing group (DOC-ADR), in which ADR was administered 12 h after DOC injection; the simultaneous-dosing group (ADR&DOC), in which both drugs were administered simultaneously; and the saline-treated group (control), in which saline was administered at the same timing as ADR injection of the other groups. The anticancer drugs were intravenously administered once (20 mg/kg of ADR and 12.5 mg/kg of DOC) (Fig. 1). The ADR dose had been shown to be cardiotoxic in mouse [27]. The DOC dose had been shown to provide the strongest cardioprotection in the intermittent-dosing mouse group [16]. Also, when dosing intervals (6, 12, 24 h) between DOC and ADR treatments were changed, 12-h interval group showed the lowest toxic death rate [16]. Heart samples were isolated from all mice 1 week after ADR was administered in the ADR&DOC and DOC-ADR groups. All heart samples were immediately rinsed with phosphate buffer saline and frozen at -196°C. All heart samples were homogenated using the Frozen Cell Crasher (Microtec Co., Ltd., Chiba, Japan). At least four mice were used in each experimental group (i.e., control, DOC-ADR and ADR&DOC), and all data was subjected to statistical analysis.

2.3 Preparation of samples and determination of total proteins

Homogenated heart tissues (50 mg) were suspended in 250 µl of 10 mM 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate (CHAPS) solution (Dojindo
Laboratories, Kumamoto, Japan), and were centrifuged at 5000 g for 15 min at 4°C. The supernatant was then collected and stored as a soluble fraction at -80°C until use. The total protein content of the supernatant was determined with the Quick Start Bradford Protein assay kit (Bio-Rad Laboratory, Inc., Hercules, CA, USA) with bovine serum albumin as a standard protein by following the written instructions. After determination of total protein content, the supernatant was diluted with CHAPS solution to 2.4 mg total protein/ml and used as a starting protein sample.

2.4. FD-LC-MS/MS method

A 10-μl volume of sample was mixed with 42.5 μl of a mixture of 0.83 mM tris(2-carboxyethyl)phosphine hydrochloride (Tokyo Chemical Industry, Tokyo, Japan), 3.33 mM ethylenediamine-N,N,N',N'-tetraacetic acid (Dojindo Laboratories, Kumamoto, Japan), and 16.6 mM CHAPS in 6 M guanidine hydrochloride buffer solution (pH 8.7, Tokyo Chemical Industry, Tokyo, Japan). Then, this sample was subsequently mixed with 2.5 μl of 140 mM 7-chloro-N-[2-(dimethylamine)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide (DAABD-Cl, Tokyo Chemical Industry, Tokyo, Japan), which is the fluorogenic derivatization reagent, in a cetonitrile (Merck KGaA, Darmstadt, Germany). After the reaction mixture was incubated in a 50°C water bath for 5 min, 1.5 μl of 20% trifluoroacetic acid (TFA, Nacalai Tesque, Kyoto, Japan) was added to stop the derivatization reaction. A portion (20 μl) of this reaction mixture (8.7 μg protein) was injected into the HPLC-fluorescence detection system at a flow rate of 0.55 ml/min. The overall system
consisted of a Shimadzu Prominence series HPLC system (Kyoto, Japan) and a fluorescence
detector (Shimadzu RF-10 A, L; λex. 395 nm; λem. 505 nm). The protein column (Intrada
WP-RP, 250 x 4.6 mm i.d., Imtakt Co., Kyoto, Japan) was used as a stationary phase for
separation of the derivatized proteins at a column temperature of 60°C. The mobile phase
consisted of 0.1 % TFA in (A) water and (B) acetonitrile. The gradient elution was
established with the following condition: 10% B held for 10 min; to 25% B in 30 min; to 28%
B in 60 min; to 30% B in 80 min; to 31% B in 120 min; to 33% B in 190 min; to 34% B in
210 min; to 34.5% B in 230 min; to 39% B in 300 min; to 44.5% in 340 min. Corresponding
peak heights were compared to identify differential protein profiles in the treatment groups.

Each subject protein in eluant recovered from the above HPLC system was
concentrated to 5 µl under reduced pressure and used for further identification process. The
residue was diluted with 240 µl of 50 mM ammonium bicarbonate solution (pH 7.8) (Nacalai
Tesque, Kyoto, Japan), 5 µl of 10 mM calcium chloride (Nacalai Tesque, Kyoto, Japan), and 5
µl of 20 ng /µl trypsin (Promega, Wisconsin, WI, USA), and the resultant mixture was
incubated for 2 h at 37°C. This mixture was then concentrated to 20 µl under reduced
pressure.

The peptide mixture (2 µl) was subjected to an LC-electrospray ionization-tandem
MS (LCQ Fleet, Thermo Fisher Scientific, Waltham, MA, USA) equipped with the custom
nanoLC system consisting of a typical LC pump (Surveyor MS pump, Thermo Fisher
Scientific, Waltham, MA, USA) with LC flow splitter (Accurate, Dionex, Sunnyvale, CA,
USA) and an HCT PAL autosampler (CTC Analytics, Zwingen, Switzerland). The sample
was loaded onto a nano-precolumn (300 μm i.d. x 5.0 mm, C18 PepMap, Dionex, Sunnyvale, CA, USA) in the injection loop and washed using 0.1% TFA in 2% acetonitrile. Peptides were separated and ion-sprayed into MS by a nano HPLC column (75 μm i.d., 3 μm C18 packed 12 cm, Nikkyo Technos, Tokyo, Japan) with a spray voltage from 1.2 to 2.0 kV. Separation was performed, employing a gradient from 5 to 50% mobile phase B (0.1% formic acid [Kanto Kagaku, Tokyo, Japan] in 90% acetonitrile) over a period of 30 min (mobile phase A: 0.1% formic acid); 50 to 100% mobile phase B in 30.1 min; 100% mobile phase B held for 10 min. The mass spectrometer was configured to optimize the duty cycle length with the quality of data acquired by progressing from a full scan of the sample to three tandem MS scans of the three most intense precursor masses (as determined by X caliber® software [Thermo Fisher Scientific, Waltham, MA, USA] in real time). The collision energy was normalized to 35%. All the spectra were measured with an overall mass/charge ratio range of 400-1500. The transfer capillary temperature was set at 200°C. MS/MS data were extracted using Bioworks v.3.3 (Thermo Fisher Scientific, Waltham, MA, USA). Spectra were searched against a murine subdatabase from the public non-redundant protein database of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) (download date: July 16, 2009) with the following search parameters: mass type, monoisotopic precursor and fragments; enzyme, trypsin (KR); enzyme limits, full enzymatic cleavage allowing up to two missed cleavages; peptide tolerance, 2.0 atomic mass units; fragment ion tolerance, 1.0 atomic mass unit; number of results scored, 250; ion and ion series calculated, B and Y ions; static modification, C (fluorogenic derivatization); differential
modifications, M (oxidation), N and Q (deamidation). The filter criteria (single, double, and triple charge peptides with a correlation factor [XCorr] and protein probability [P]) were adjusted keeping the empirically determined protein false discovery rate (FDR) below 1.0%. FDR was calculated using the number of significant unique peptide in the reversed database divided by the number of those in the forward database. Proteins were identified with more than two peptides ≥ 6 amino acids long. A low probability suggests a good match in that it indicates that the match between the sequence and the spectrum could not easily happen by accident. If multiple proteins shared amino acid sequences with found peptides, the protein with the lowest probability among them was determined to be the most likely match, and ubiquitous keratins and trypsin were excluded as potential matches.

2.5. Statistical analysis

Results are expressed as the mean ± standard deviation. Differences between the groups were determined by Tukey-Kramer multiple comparison test. $P < 0.05$ was considered to be significant.

3. Results

3.1. Analytical performance of FD-LC-MS/MS method

The total protein amount required for quantification was 8.7 μg per HPLC injection. The precision of the method was confirmed based on the reproducibility of the peak heights using four peaks, including high, medium, and low peaks. The relative standard deviation
(RSD, %) values were in the range of 6.6-11.9% for between-days (n = 5) replicates. The reproducibility of the retention times using same peaks was also calculated, and the between-day RSD values were less than 0.82% (n = 5).

3.2. Differential profiling and protein identification

Typical chromatograms from FD-LC-MS/MS analysis of DOC-ADR and ADR&DOC samples are depicted in Fig. 2. Each peak height shows the expression level of an individual protein. Twenty-five protein peaks (Table 1) appeared to differ but nine proteins differed with statistical significance at the P levels shown in Fig. 3. Also, the differences in the expression levels of these proteins, grouped according to their functional classification, are depicted in Fig. 3. The peak numbers of the differentially expressed proteins are inserted in Fig. 2. In both of the drug treatment groups, aconitase (peak no. 11) and lactate dehydrogenase A (Ldha) protein (peak no. 23) were significantly reduced and ubiquinol-cytochrome c reductase (peak no. 7) was significantly elevated relative to the control group. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, peak no. 13) in the DOC-ADR group increased more than 7-fold, compared with the ADR&DOC group. Creatine kinase (CK) was significantly increased in the DOC-ADR group, compared with the control.

4. Discussion

In our pre-clinical (mouse) study [14], the DOC-ADR group showed a significantly
higher survival rate compared with the ADR&DOC group ($P < 0.01$), and the survival rates on day 35 were 86.2% in the DOC-ADR group and 22.2% in the ADR&DOC group. A subsequent study revealed that the toxic death of mouse was attributed to cardiotoxicity induced by ADR [16]. Therefore, in this study, the differential proteomic profiling of mouse heart tissues from DOC-ADR, ADR&DOC, and control groups was performed to identify the proteins that mediate the cardioprotective effect of DOC pretreatment in the DOC-ADR group. Significant QT interval prolongation of mouse was observed 1 week after ADR-treatment, compared with non-treated mouse; therefore, 1 week after drug treatment was chosen for the toxicoproteomic analysis.

The RSD values suggest that the FD-LC-MS/MS method has excellent reproducibility in the proteomic analysis of heart tissue samples. With the FD-LC-MS/MS method, reproducible chromatograms were obtained from heart tissue with small amounts of protein (8.7 µg per HPLC injection), in contrast to other proteomic methods where from dozens to hundreds of micrograms of protein samples are required [28, 29]. The fluorogenic derivatization is cystein thiol-specific. The fluorogenic reagent (DAABD-Cl) is excessively added to the sample; therefore, all the proteins with one or more cystein residues are labeled and are able to be detected by fluorescence detector. The cystein-free proteins are excluded from the analytical targets of FD-LC-MS/MS; however, most of proteins contain one or more cystein residues [30] and other proteomic methods with labeling technologies, such as isotope-coated affinity tag (ICAT) targeting cystein thiol, have been widely applied to proteomic studies [31, 32]. For the sensitivity of FD-LC-MS/MS, the detection limit of an
actin standard (MW 43000, including 6 cysteine residues) was 440 femtomol per HPLC injection [24]. The sensitivities of different proteins with similar molecular weight are considered to be partly dependent on the number of cysteine included in the protein.

Based on the high sensitivity, resolution, and reproducibility, nine proteins were found to be differentially expressed between the three groups, seven of which were the proteins involved in energy production processes, the glycolytic pathway, the tricarboxylic acid (TCA) cycle, and the electron transport chain as shown in Fig. 3. Among the differentially expressed proteins, aconitase (peak no. 11) was the most drastically reduced in this study and has been reported to be inactivated by ADR treatment [33, 34]. Also, Ldhα protein (peak no. 23) was significantly decreased in both drug treatment groups when compared with the control. Lactate dehydrogenase is known as an escape enzyme that reflects cytotoxicity or cellular damage and has been measured in toxicological studies. Therefore, these results ensured the validity of FD-LC-MS/MS as a toxicoproteomic method.

Most of the differentially expressed proteins identified in our study are involved in the myocardial energy network. Heart muscle requires large amounts of energy to sustain its contractile performance; therefore, cellular energy deficits are recognized as an important and common factor in the development of cardiac myopathies [35-37]. Adenosine 5’-triphosphate (ATP) serves as primary, immediate source of energy; however intracellular ATP pools are rather small. Moreover, ADR have been reported to diminish cardiac energy reserves by reducing ATP through several mechanisms, such as oxidative damage, damage to membrane and signaling pathways, disruption of mitochondrial function, and inflammation.
These effects have been consistently observed in patients treated with ADR [43]. Evidence has accumulated indicating a relationship between myocardial energy metabolism and ADR-induced cardiotoxicity [44].

Among the six proteins that were differently expressed between the dosing groups, four were more highly expressed in the ADR&DOC group than in the DOC-ADR group (peak nos. 10, 11, 16, and 19). Based on their high expression levels in the ADR&DOC group, it was assumed that the activated energy production contributed to enhance cardiac contractile force and maintain function. However, the elevated expression observed in the ADR&DOC group did not lead to an increase in survival rate in the combination therapy. In other words, the lower expression of the four proteins in the DOC-ADR group did not adversely affect survival. Furthermore, although the expression of TCA cycle enzymes (peak nos. 11 and 16) in the DOC-ADR group was significantly lower than those in control group, a higher survival rate was observed in DOC-ADR group than in the ADR&DOC and ADR-only treatment groups [14, 16]. Therefore, the alteration of these four proteins may not be a definitive factor for cardioprotective effect of DOC-pretreatment.

GAPDH catalyses the nicotinamide adenine dinucleotide-dependent conversion of glyceraldehyde-3-phosphate into 1,3-diphosphoglycerate. It is the first energy-harvesting enzyme and a central layer in glycolytic pathway, placing it at the core of cancer cell survival [45]. Generally, GAPDH is considered a housekeeping enzyme because it is constitutively expressed in most tissues and cell types. However, several reports revealed that it is differentially regulated by circadian clock or in disease states [46, 47]. The highly
elevated expression of GAPDH in the DOC-ADR group may be important in maintaining cardiac function after combination therapy and result in higher survival rates. It is unclear whether all glycolysis-dependent energy supply is increased by elevated expression of GAPDH because the expression of another glycolytic enzyme, aldolase, was lower in the DOC-ADR group than in the ADR&DOC group. However, it was reported that ADR induced a decrease in ATP content in endothelial cell, which was paralleled by a decrease in GAPDH activity [48]. Therefore, to some extent, the elevated expression of GAPDH in the DOC-ADR group might protect heart muscle from ADR-induced cardiotoxicity. The cardiotoxicity of ADR has been ascribed mainly to oxidative stress by ADR-induced free radicals predominantly accumulating in mitochondria. It is possible that the elevated expression of GAPDH is a result of the compensatory activation of energy supply via a glycolytic pathway, responding to severe reductions in mitochondrial ATP production due to the accumulation of ADR-induced free radicals. Alternatively, Baek et al. proposed direct scavenging of reactive oxygen species (ROS) by GAPDH based on the result that over-expression of GAPDH in yeast cells resulted in an increase in overall cellular antioxidative capacity [49]. Because ROS are involved in Bax-induced apoptosis in yeast and plants [50], ROS-induced cell death in animals might be inhibited by GAPDH. Moreover, a variety of recent studies have brought new insights into this old enzyme, and current evidence now suggests that GAPDH is a multifunctional protein that is involved in numerous cellular processes in animals [51-55]; therefore, unknown effects of GAPDH may contribute to the cardioprotective effects of DOC pre-administration in ADR/DOC.
combination therapies.

CK catalyses the reversible conversion of phosphocreatine and adenosine diphosphate to creatine and ATP. The elevated expression of CK may indicate a relatively high cellular energy state in the DOC-ADR group relative to the control group; although the expression was found not to be significantly different between the two dosing groups.

To date, two papers have reported proteomic studies of ADR-induced cardiotoxicity and the mechanism against it [56, 57]. On one hand, redox proteomics was performed based on the hypothesis that the cardiotoxic actions of ADR are caused by the oxidative stress [56]. However, that approach may be insufficient to reveal alterations in protein expression in important cellular processes because it focuses on identifying only the oxidatively modified proteins. Using a different approach, Kang and colleagues identified differences in global proteomic profiles of heart tissue between non-transgenic (TG) and TG mice that over-express metallothionein to understand the molecular mechanism of metallothionein protection against ADR-induced cardiotoxicity [57]. They found elevated expression of cytochrome c oxidase subunit Va, which regulates oxidative phosphylation, in TG mouse heart in response to ADR treatment. In the present study, the highly sensitive proteomic analysis of heart tissues suggests that GAPDH may counteract ADR-induced cardiotoxicity. GAPDH is a multifunctional protein, participating in energy supply and antioxidative activity; therefore any or all of GAPDH’s functions may be relevant to the cardioprotective effects observed in the DOC-ADR treatment group. However, it was not yet clear exactly what mechanism was responsible for either the cardioprotective effects or the over-expression of GAPDH observed
in the DOC -ADR group. Previous research has shown that the over-expression of antioxidant enzymes (i.e., superoxide dismutase and catalase) in TG mice protected heart from ADR-induced cardiotoxicity [58, 59]. Therefore, the same transgenic approach or another approach with the addition of N^6-naphthalenemethyl-2’-methoxybenzamido-β-NAD$^+$ for GAPDH inhibition [60] may be useful in validating and elucidating any cardioprotective effects associated with GAPDH. Further analysis of GAPDH is necessary to determine if it is a potential target for protective intervention against ADR-induced cardiotoxicity.

In summary, in order to better understand the cardioprotective effect of pre-administration of DOC in an ADR/DOC combination anti-cancer therapy, we applied the FD-LC-MS/MS method to differential proteomic analysis of heart tissues from control, intermittent-dosing and simultaneous-dosing groups of mice. This highly reproducible and sensitive method identified significantly altered expression of nine proteins in mouse heart, and seven of these proteins are involved in cellular energy production. Significantly elevated expression of GAPDH was observed in the DOC-ADR group, in which the survival rate was higher [14, 16], than the ADR&DOC group. Therefore, GAPDH may be developed as a potential target for protective intervention and a biomarker for evaluation of cardioprotective effect of experimental treatments in pre-clinical studies.

Acknowledgement

K. O. is grateful to the support provided by the Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and
Technology (MEXT). We also acknowledge the technical support of Mr. Daisuke Higo (Thermo Fisher Scientific) in the protein identification.

The authors declared no conflict of interest.
References

methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 2006; 5: 651-658.

[43] Eidenschink AB, Schroter G, Muller-Weihrich S, Stern H. Myocardial high-energy phosphate metabolism is altered after treatment with anthracycline in childhood. Cardiol
Young 2000; 10: 610-617.

[45] Phadke MS, Krynetskaia NF, Mishra AK, Krynetskiy E. Glyceraldehyde 3-phosphate dehydrogenase depletion induces cell cycle arrest and resistance to antimetabolites in human carcinoma cell lines. J Pharmacol Exp Ther 2009; 331: 77-86.

[51] Sirover MA. New nuclear functions of the glycolytic protein,

Figure captions

Fig. 1 Experimental protocol and time-line for the *in vivo* studies. Abbreviations: DOC, docetaxel (12.5 mg/kg i.v.); ADR, adriamycin (20 mg/kg i.v.). Heart tissue sampling: animal sacrifice, removal heart and processing.

Fig. 2 Chromatograms of proteins derivatized with DAABD-Cl in mouse heart. The upper and lower chromatograms were obtained from the DOC-ADR and ADR&DOC groups, respectively. The peaks of differentially expressed proteins are numbered.

Fig. 3 Changes in peak heights relative to control between DOC-ADR and ADR&DOC groups. Peak numbers correspond to those in Fig. 2. Mean values ± SD are plotted. Significant differences between control vs each dosing group are indicated by ††$P \leq 0.05$ or †††$P \leq 0.01$. Significant differences between DOC-ADR and ADR&DOC are indicated by *$P \leq 0.05$ or **$P \leq 0.01$.
Table 1 List of proteins identified by FD-LC-MS/MS method

<table>
<thead>
<tr>
<th>Peak number</th>
<th>Protein name</th>
<th>Molecular mass (Da)</th>
<th>SEQUEST score</th>
<th>Peptide hit</th>
<th>Coverage by mass</th>
<th>GI numberb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ecotropic viral integration site 1</td>
<td>115594.0</td>
<td>18.1</td>
<td>3</td>
<td>1.28</td>
<td>gi</td>
</tr>
<tr>
<td>2</td>
<td>Superoxide dismutase 1, soluble</td>
<td>15932.8</td>
<td>54.2</td>
<td>6</td>
<td>35.66</td>
<td>gi</td>
</tr>
<tr>
<td>3</td>
<td>Actin, gamma, cytoplasmine 1</td>
<td>41765.8</td>
<td>18.1</td>
<td>2</td>
<td>5.30</td>
<td>gi</td>
</tr>
<tr>
<td>4</td>
<td>Diazepam binding inhibitor</td>
<td>9994.1</td>
<td>20.2</td>
<td>2</td>
<td>34.33</td>
<td>gi</td>
</tr>
<tr>
<td>5</td>
<td>Heterogeneous nuclear ribonucleoprotein A2/B1</td>
<td>35942.8</td>
<td>30.2</td>
<td>4</td>
<td>12.73</td>
<td>gi</td>
</tr>
<tr>
<td>6</td>
<td>Phosphatidylethanolamine binding protein 1</td>
<td>20817.3</td>
<td>18.2</td>
<td>2</td>
<td>12.20</td>
<td>gi</td>
</tr>
<tr>
<td>7</td>
<td>Ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1</td>
<td>29349.2</td>
<td>18.2</td>
<td>2</td>
<td>8.57</td>
<td>gi</td>
</tr>
<tr>
<td>8</td>
<td>Hemoglobin alpha 1 chain</td>
<td>15075.8</td>
<td>10.2</td>
<td>2</td>
<td>10.15</td>
<td>gi</td>
</tr>
<tr>
<td>9</td>
<td>Albumin</td>
<td>68647.8</td>
<td>74.2</td>
<td>10</td>
<td>11.08</td>
<td>gi</td>
</tr>
<tr>
<td>10</td>
<td>Aldolase A, fructose-bisphosphate</td>
<td>39331.3</td>
<td>42.3</td>
<td>5</td>
<td>8.46</td>
<td>gi</td>
</tr>
<tr>
<td>11</td>
<td>Aconitase 2, mitochondrion</td>
<td>85444.1</td>
<td>110.3</td>
<td>13</td>
<td>13.24</td>
<td>gi</td>
</tr>
<tr>
<td>12</td>
<td>Myoglobin</td>
<td>17059.0</td>
<td>112.2</td>
<td>15</td>
<td>45.66</td>
<td>gi</td>
</tr>
<tr>
<td>13</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td>35787.2</td>
<td>46.2</td>
<td>5</td>
<td>14.50</td>
<td>gi</td>
</tr>
<tr>
<td>14</td>
<td>Creatine kinase, muscle</td>
<td>43017.8</td>
<td>74.2</td>
<td>10</td>
<td>17.45</td>
<td>gi</td>
</tr>
<tr>
<td>15</td>
<td>Acetyl-coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A thiolase)</td>
<td>41831.5</td>
<td>34.2</td>
<td>4</td>
<td>14.56</td>
<td>gi</td>
</tr>
<tr>
<td>16</td>
<td>Isocitrate dehydrogenase 2 (NADP+), mitochondrial</td>
<td>50874.0</td>
<td>30.2</td>
<td>3</td>
<td>7.66</td>
<td>gi</td>
</tr>
<tr>
<td>17</td>
<td>Malate dehydrogenase 2, NAD (mitochondrial)</td>
<td>35585.8</td>
<td>48.2</td>
<td>5</td>
<td>14.93</td>
<td>gi</td>
</tr>
<tr>
<td>18</td>
<td>Electron transferring flavoprotein, alpha polypeptide</td>
<td>34987.5</td>
<td>28.2</td>
<td>4</td>
<td>5.44</td>
<td>gi</td>
</tr>
<tr>
<td>19</td>
<td>Electron transferring flavoprotein, alpha polypeptide</td>
<td>34987.5</td>
<td>30.2</td>
<td>3</td>
<td>12.44</td>
<td>gi</td>
</tr>
<tr>
<td>20</td>
<td>Enolase 3, beta muscle</td>
<td>46995.3</td>
<td>40.2</td>
<td>6</td>
<td>9.11</td>
<td>gi</td>
</tr>
<tr>
<td>21</td>
<td>Acyl-Coenzyme A dehydrogenase, long chain</td>
<td>47877.5</td>
<td>20.2</td>
<td>2</td>
<td>5.40</td>
<td>gi</td>
</tr>
<tr>
<td>22</td>
<td>Pyruvate dehydrogenase (lipoamide) beta</td>
<td>38912.1</td>
<td>30.2</td>
<td>4</td>
<td>14.78</td>
<td>gi</td>
</tr>
<tr>
<td>23</td>
<td>Ldha protein</td>
<td>36475.2</td>
<td>18.1</td>
<td>2</td>
<td>3.43</td>
<td>gi</td>
</tr>
<tr>
<td>24</td>
<td>Lactate dehydrogenase B</td>
<td>36549.1</td>
<td>54.2</td>
<td>6</td>
<td>17.00</td>
<td>gi</td>
</tr>
<tr>
<td>25</td>
<td>Malate dehydrogenase 1, NAD (soluble)</td>
<td>36488.1</td>
<td>38.2</td>
<td>4</td>
<td>15.26</td>
<td>gi</td>
</tr>
</tbody>
</table>

^aPeak numbers correspond to those in Fig. 2. ^bGI number is a series of digits that are assigned consecutively to each sequence record processed by NCBI.
Fig. 1

A Intermittent-dosing Protocol

DOC-ADR

B Simultaneous-dosing Protocol

ADR&DOC

C Saline-treated Protocol

Control

DOC

ADR

Saline

Heart tissue sampling
Fig. 2

Retention time (hour)

Fluorescence intensity

DOC-ADR

ADR&DOC
Fig. 3

Glycolytic pathway

Aldolase (peak no. 10)

Glyceraldehyde-3-phosphate dehydrogenase (peak no. 13)

Ldha protein (peak no. 23)
Fig. 3 (continued)

TCA cycle

- **Aconitase 2 (peak no. 11)**
 - Peak height (ratio to control)
 - DOC-ADR: +
 - ADR&DOC: ***

- **Isocitrate dehydrogenase 2 (peak no. 16)**
 - Peak height (ratio to control)
 - DOC-ADR: +
 - ADR&DOC: **

Electron transport chain

- **Ubiquinol-cytochrome c reductase (peak no. 7)**
 - Peak height (ratio to control)
 - DOC-ADR: +
 - ADR&DOC: ***

- **Electron transferring flavoprotein (peak no. 19)**
 - Peak height (ratio to control)
 - DOC-ADR: +
 - ADR&DOC: **
Fig. 3 (continued)

Other

Diazepam binding inhibitor (peak no. 4)

Creatine kinase (peak no. 14)