<table>
<thead>
<tr>
<th>Title</th>
<th>Radially Anisotropic Ring/Arc-Shaped Rare-Earth Bonded Magnets Using a Self-Organization Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamashita, Fumitoshi; Tsutsumi, Shinichi; Fukunaga, Hirotoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE Transactions on Magnetics, 40(4), pp.2059-2061; 2004</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/24044</td>
</tr>
</tbody>
</table>

© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

NAOSITE: Nagasaki University’s Academic Output SITE

http://naosite.lb.nagasaki-u.ac.jp
Radially Anisotropic Ring/Arc-Shaped Rare-Earth Bonded Magnets Using a Self-Organization Technique

Fumitoshi Yamashita, Shinichiro Tsutsumi, and Hirotoshi Fukunaga, Member, IEEE

Abstract—We developed a new technique using self-organization of binder that enabled the alignment of a molecular chain. By using this technique, we controlled the flexibility of Nd–Fe–B-based rigid sheet magnets, transformed them into various shapes, and succeeded in preparing radially anisotropic ring- or arc-shaped magnets. Optimizations of the consolidation process of the self-organization binder under a transverse alignment field and the transformation process into various specific shapes realized radially anisotropic magnets with 160 kJ/m³ in (BH)max.

Index Terms—Flexible bonded magnet, hydrogenation, disproportionation, desorption, and recombination (HDDR)-Nd–Fe–B powder, radially anisotropic magnet.

I. INTRODUCTION

ISOTROPIC ring-shaped Nd–Fe–B bonded magnets made by the melt-spinning method, typically 25 mm or less in outer diameter, have been generally applied to small motors for office automation, audio-visual equipment, personal computers, and their peripheral equipment. They are prepared by the compacting technique, and have a typical (BH)max value of 80 kJ/m³. From the viewpoint of reduction in current consumption and further miniaturization of such motors, however, developments of new types of rare-earth bonded magnets with superior magnetic properties such as 160 kJ/m³ in (BH)max are strongly requested. Although usage of anisotropic Nd–Fe–B powder made by the hydrogenation, disproportionation, desorption, and recombination (HDDR) process is one of promising methods of preparing magnets for small motors beyond conventional isotropic Nd–Fe–B bonded magnets, the magnetic properties of radially anisotropic ring-shaped magnets deteriorated when their outer diameter is decreased down to approximately 25 mm. Therefore, anisotropic Nd–Fe–B bonded magnets have not been mainly applied to small motors up to now.

In order to overcome the above difficulty, we developed a new technique using self-organization of a binder, which enabled the alignment of a molecular chain. By using this technique, we controlled the flexibility of Nd–Fe–B-based rigid sheet magnets (approximately 1 mm in thickness), transformed them into various shapes, and succeeded in preparing radially anisotropic ring- or arc-shaped bonded magnets previously [1]–[3]. As a recent achievement, optimizations of the consolidation process of the self-organization binder under a transverse alignment field and the transformation process into various specific shapes realized radially anisotropic magnets with superior magnetic stabilities. Their (BH)max value exceeded 160 kJ/m³, even if their outer diameter is less than 25 mm.

II. EXPERIMENT

A. Materials

HDDR Nd–Fe–B (53–150 μm in particle size, 292 kJ/m³, (BH)max)), RD (reduction and diffusion) Sm–Fe–N (2–3 μm in particle size, 310 kJ/m³ in (BH)max) were used as starting materials. Solid epoxy-oligomer, blocked-isocyanate, and polyamide-12 including an adhesive agent were also used for the self-organization system for preparing radially anisotropic ring- or arc-shaped rare-earth bonded magnets.

B. Preparation Processes

Fig. 1 shows the self-organization phenomenon of the binder schematically, together with the two kinds of anisotropic powder used for a magnet. In the encapsulation process, cores and cells, which is called “Phase-A,” were prepared by mixing HDDR Nd–Fe–B powder, RD Sm–Fe–N powder, and epoxy-oligomer including blocked-isocyanate as shown in Fig. 1(a). Subsequently, 2 wt.% of polyamide fine particle with adhesive agent (“Phase-B”) and lubricant were dry-blended with “Phase-A” and compounded. Next, the powdery compound was consolidated into a green compact under a pressure...
C to 160

BH

of the HDDR Nd value of the hybrid

C, reached the peak at 145

BH

and density were

C, and a

and density were measured

values, and its value at 100

BH

C is almost the same as that of

C. This temperature is lower than

BH

and found that

value

at 80

values [4],

C, and

of the

at 100

value

were measured by the

BH

C and curing it. A radially

of the hybrid bonded magnets as a function

approximately 2% to 5% at 60

a sheet-shaped rigid bonded magnet with the rolling rate of ap-

than 25 mm in outer diameter. It could be prepared by rolling

magnet, which is approximately 1 mm in thickness and less

of the examples is a radially anisotropic ring-shaped bonded

magnet, which forms the chemical contact point between “Phase-A” and

Phase-B” as shown in Fig. 1(c). Consequently, the chemical

structure of the self-organized binder is presumed as shown in

Fig. 2.

Finally, by using self-organization of binder, which enabled

the alignment of molecular chain as shown in Fig. 1(d), we

controlled the flexibility of Nd–Fe–B-based rigid sheet mag-

nets, transformed them into various shapes, and succeeded in

preparing radially anisotropic ring- or arc-shaped magnets. One

of the examples is a radially anisotropic ring-shaped bonded

magnet, which is approximately 1 mm in thickness and less

than 25 mm in outer diameter. It could be prepared by rolling

a sheet-shaped rigid bonded magnet with the rolling rate of ap-

proximately 2% to 5% at 60 °C to 80 °C and curing it. A radially

anisotropic arc-shaped rigid bonded magnet was also obtained

by stamping a sheet-shaped rigid bonded magnet at 120 °C

under the pressure of 0.3 GPa.

III. RESULTS AND DISCUSSION

A. Optimizations of the Solidification Process

Figs. 3–5 show examples of the optimizations of the con-

solidation process of the green compact under a transverse

alignment field for HDDR Nd–Fe–B and their hybrid bonded

magnets. The density and (BH)max were measured by the

Archimedes method and with a vibrating sample magnetometry

(VSM) after magnetization by a pulsed field of 4 MA/m, re-

spectively. As shown in Fig. 3, the density and (BH)max of the

bonded magnet increased with an increase in the compacting

temperature and saturated at 120 °C. The (BH)max value

exceeded 160 kJ/m³ at 100 °C, reached the peak at 145 °C, and

then decreased at 160 °C. This decrease can be attributed to

the polymerization reaction of the binder. In the hybrid bonded

magnets including RD Sm–Fe–N powder, the (BH)max value

exceeded 160 kJ/m³ at 80 °C. This temperature is lower than

that for HDDR Nd–Fe–B bonded magnet shown in Fig. 4.

Furthermore, the decrease in (BH)max value of the hybrid

bonded magnets due to curing in air was smaller than that of

HDDR Nd–Fe–B bonded magnet as shown in Fig. 5.

B. Magnetic Stabilities and Applications

Generally, the effect of the initial flux loss, which is attributed
to irreversible magnetization reversal at an elevated tempera-
ture, is more important than that of the long-term flux loss in
applications to small electric motors. Thus, the initial flux loss
at an elevated temperature was examined in air, and the results
were shown in Fig. 6. As clearly seen in the figure, the initial
flux loss of the hybrid bonded magnets was smaller than that of
HDDR Nd–Fe–B bonded magnet despite their small coercivity
Hc1 values, and its value at 100 °C is almost the same as that of
the conventional isotropic Nd–Fe–B bonded magnet made from
melt-spun powder.

Previously, we systematically evaluated the flux loss in
bonded magnets with various values of Hc1 and found that
initial flux losses in some nanocomposite rare-earth bonded
magnets were smaller than that of a conventional isotropic
Nd–Fe–B bonded magnet, despite their small Hc1 values [4],

Fig. 2. Chemical structure of self-organized binder, which is prepared
by reaction of “Phase-A,” “Phase-B,” and their chemical contact point.
The chemical contact points are urethane, oxazoridone, and allophanate,
respectively.

Fig. 3. Density and (BH)max of the HDDR Nd–Fe–B bonded magnets as a
function of compacting temperature. The (BH)max and density were
measured with a VSM after magnetization by a pulsed field of 4 MA/m and by
the Archimedes method, respectively.

Fig. 4. Density and (BH)max of the hybrid bonded magnets as a function
of the fraction of RD Sm–Fe–N powder. The (BH)max and density were
measured with a VSM after magnetization by a pulsed field of 4 MA/m and by
the Archimedes method, respectively.
Fig. 5. Decrease in $\langle BH \rangle_{\text{max}}$ of hybrid bonded magnets due to curing, together with that of HDDR Nd–Fe–B bonded magnet. The curing was carried out for 20 min in air. The $\langle BH \rangle_{\text{max}}$ was measured with a VSM after magnetization by a pulsed field of 4 MA/m.

Fig. 6. Initial flux loss of a hybrid bonded magnet, together with flux losses of HDDR Nd–Fe–B and conventional isotropic Nd–Fe–B bonded magnet.

[5]. The above-mentioned improvement in the initial flux loss of a hybrid bonded magnets is possibly due to an improvement in the squareness (H_k/H_C) of the demagnetization curve at the exposed temperatures. The squareness of a demagnetization curve at 100 °C is shown in Fig. 7.

Fig. 7. Squareness (H_k/H_C) at 100 °C of the hybrid bonded magnets as a function of the fraction of RD Sm–Fe–N powder. The squareness was measured with a VSM after magnetization by a pulsed field of 4 MA/m.

Fig. 8. External views of a radially anisotropic ring- and arc-shaped bonded magnets. The intended dimension of the ring shaped magnet are 23 mm in outer diameter and 1.05 mm in thickness. The intended dimensions of the arc-shaped magnet are 3.55, 3.65, 0.90, and 5 mm in inside radius, outside radius, maximum thickness, and length, respectively.

melt-spun powder. Therefore, they can be applied to various small motors.

IV. CONCLUSION

We developed a new technique, which utilizes the self-organization of binder, for the solidification process under a transverse alignment field and the transformation process into various specific shapes. This technique enabled to prepare radically anisotropic ring- or arc-shaped HDDR Nd–Fe–B/RD Sm–Fe–N hybrid bonded magnets with superior magnetic stabilities. Their $\langle BH \rangle_{\text{max}}$ value exceeded 160 kJ/m3, even if their outer diameter is less than 25 mm.

REFERENCES

