Identifying Trough of Recent Recession in Japan — An Application of Stochastic Business Indicator

Shinji Yoshioka

Abstract

In Japan, the Indexes of Business Conditions calculated by the Cabinet Office of the Government of Japan is employed for assessing business cycle. The CI consists of three components, such as leading, coincident, and lagging indexes. The CI is calculated by composing month-to-month percentage changes in multiple economic indicators. On contrary, in the U.S., for observing business condition, a stochastic business indicator is mainly employed. This study applies the latter U.S. approach to estimate a latent stochastic business indicator for Japanese economy according to Stock and Watson using a state space model solved by Kalman filter. The estimated stochastic business indicator seems to fit quite well to existing Japanese official Indexes of Business Conditions. The estimated results appear to indicate that the trough month of the latest recession in Japan is March.

Key words: Business cycle, Recession, Stochastic business indicator, State space model, Kalman filter, Japan

JEL Classification: C, C, C, C, E, and O

1. Introduction

From April on, the Government of Japan has officially adopted a composite index, named Indexes of Business Conditions prepared by the Cabinet Office for assessing business cycles. This Indexes of Business Conditions hereafter, CI consists of three indexes, such as leading, coincident, and lagging indexes. Each Index includes following components

<table>
<thead>
<tr>
<th>Leading Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Index of Producer Inventory Ratio of Finished Goods Final Demand Goods</td>
</tr>
<tr>
<td>L Index of Producer Inventory Ratio of Finished Goods Producer Goods For Mining and Manufacturing</td>
</tr>
</tbody>
</table>

Shinji Yoshioka, Faculty of Economics, Nagasaki University, s-ysk@nagasaki-u.ac.jp
<table>
<thead>
<tr>
<th>Common Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Job offers □ Excluding New School Graduates</td>
<td></td>
</tr>
<tr>
<td>New Orders for Machinery at Constant Prices □ Except for Volatile Orders</td>
<td></td>
</tr>
<tr>
<td>Total Floor Area of New Housing Construction Started</td>
<td></td>
</tr>
<tr>
<td>Index of Producer’s Shipment of Durable Consumer Goods □ Change From Previous Year</td>
<td></td>
</tr>
<tr>
<td>Consumer Confidence Index</td>
<td></td>
</tr>
<tr>
<td>Nikkei Commodity Price Index □ Items □ Change From Previous Year</td>
<td></td>
</tr>
<tr>
<td>Interest Rate Spread</td>
<td></td>
</tr>
<tr>
<td>Stock Prices □ TOPIX □ Change From Previous Year</td>
<td></td>
</tr>
<tr>
<td>Index of Investment Climate □ Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Sales Forecast □ II. of Small Business</td>
<td></td>
</tr>
</tbody>
</table>

Coincident Index

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index of Industrial Production □ Mining and Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Index of Producer □ Shipments □ Producer Goods for Mining and Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Large Industrial Power Consumption</td>
<td></td>
</tr>
<tr>
<td>Index of Capacity Utilization Ratio □ Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Index of Non □ Scheduled Worked Hours □ Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Index of Producer □ Shipment □ Investment Goods Excluding Transport Equipments</td>
<td></td>
</tr>
<tr>
<td>Retail Sales Value □ Change From Previous Year</td>
<td></td>
</tr>
<tr>
<td>Wholesale Sales Value □ Change From Previous Year</td>
<td></td>
</tr>
<tr>
<td>Operating Profits □ All Industries</td>
<td></td>
</tr>
<tr>
<td>Index of Sales in Small and Medium Sized Enterprises □ Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Effective Job Offer Rate □ Excluding New School Graduates</td>
<td></td>
</tr>
</tbody>
</table>

Lagging Index

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index of Tertiary Industry Activity □ Business Service</td>
<td></td>
</tr>
<tr>
<td>Index of Regular Workers Employment □ Manufacturing □ Change From Previous Year</td>
<td></td>
</tr>
<tr>
<td>Business Expenditures for New Plant and Equipment at Constant Prices □ All Industries</td>
<td></td>
</tr>
<tr>
<td>Living Expenditure □ Workers □ Households □ Change From Previous Year</td>
<td></td>
</tr>
<tr>
<td>Corporation Tax Revenue</td>
<td></td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td></td>
</tr>
<tr>
<td>Interest Rates on New Loans and Discounts □ Domestically licensed banks</td>
<td></td>
</tr>
</tbody>
</table>

Source □ CAO □

According to CI the Cabinet Office of the Government of Japan identifies the reference date of business cycle in Japan as follows □

1 Although the CI is one of main criteria, more generalized and broader approach is taken for the identification of the reference dates of business cycle in Japan □
Table ▶ The Reference Dates of Business Cycles in Japan

<table>
<thead>
<tr>
<th>Peak</th>
<th>Trough</th>
<th>Peak</th>
<th>Trough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>Nov.</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Jul.</td>
<td>Dec.</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Nov.</td>
<td>Mar.</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Feb.</td>
<td>Feb.</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Jun.</td>
<td>Nov.</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Feb.</td>
<td>Oct.</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>May.</td>
<td>Jan.</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Nov.</td>
<td>Jan.</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Oct.</td>
<td>n/a</td>
<td>Q</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Source ▶ CAO 1999, p. 1

Although the Cabinet Office has not officially identified the trough of the recent recession after the peak of October, many economists regard that the recession ended in the first quarter in March. This is mainly because of the movement of CI, which is indicated as follows.

Figure ▶ Development of CI 1980M1-2008M1

Note ▶ The shadowed periods are of recession. Although CAO does not reveal the latest trough month, it is provisionally set in March according to a broad consensus among economists.

Source ▶ Author based on Cabinet Office data
While the Japanese CI is calculated by composing month-to-month percentage changes in multiple economic indicators, The U.S. takes another approach, which employs a stochastic business indicator. The latter methodology uses a state space model to be solved by Kalman filter, in order to estimate a latent indicator. This study applies the latter U.S. approach to estimate a stochastic business indicator for Japan. Including this introductive section, this paper consists of four sections: the second section focuses on methodology of Japanese CI and stochastic business indicator; the third present data and estimation results; and, the final section briefly concludes the paper. This study is based on available data and information until March, and EViews is employed for estimation.

2. Methodology and Model

Methodology of Indexes of Business Conditions

Summarizing CAO, the Indexes of Business Conditions CI is calculated according to following four steps.

Step A formula is used for calculating the symmetric percent change of individual series as in the following.

\[
 r_{it} = \frac{y_{it} - y_{it-1}}{y_{it} + y_{it-1}}
\]

where

- \(r \): Symmetric percent change
- \(y \): Individual series
- \(i \): Number assigned to each indicator
- \(t \): Time point

If the given time series is zero or a negative value, or is already in percentage form, simple arithmetic differences are calculated.

\[
 r_{it} = y_{it} - y_{it-1}
\]

Then, outliers are trimmed using the following formula.

\[
 \varphi = \begin{cases}
 -kQ_Q - Q & \text{for } r_{it} < -kQ_Q - Q \\
 r_{it} & \text{for } -kQ_Q - Q \leq r_{it} \leq kQ_Q - Q \\
 kQ_Q - Q & \text{for } r_{it} > kQ_Q - Q
 \end{cases}
\]

where

- \(Q \): The first quartile in the interquartile range
- \(Q \): The third quartile in the interquartile range

2 For more detailed and precise information, see Note for Calculation of CAO.
Step 1 The trend of individual series mean percent change is calculated by the trimmed month backward moving average as follows:

$$
\bar{\Delta} = \frac{1}{n} \sum_{i} \Delta_i
$$

where \(\bar{\Delta} \) Mean percent change

Next, percent change normalized by interquartile range is calculated by applying the following formula:

$$
Z_i = \frac{\Delta_i - Q_i^0}{Q_i^1 - Q_i^0}
$$

where \(Z_i \) Mean percent change

Step 2 Composite percentage change is calculated by adding up trend composite mean percent change, and the mean of percent change normalized by interquartile range composite percent change normalized by interquartile range. In this process, composite percent change normalized by interquartile range is multiplied by the mean of interquartile ranges composite interquartile range so that the levels of the trend component and the cyclical component coincide as follows:

$$
\bar{\Delta} = \frac{1}{n} \sum \Delta_i
$$

$$
\bar{Z} = \frac{1}{n} \sum Z_i
$$

$$
\bar{Q} = \frac{1}{n} \sum \frac{Q_i^0 + Q_i^1}{2}
$$

$$
V = \frac{1}{n} \sum \frac{V_i}{n}
$$

where \(V \) Composite percent change

Finally, the index is rebased so that the value for the reference year is equal to 1. The current reference year is

Model of Stochastic Business Indicator

On contrary of above methodology of CI in Japan, that of stochastic business indicator assumes a unique and latent index, which affects and reveals existing and observable indicator,
such as production, labor, income, and consumption, etc. Assuming that this unique and latent index and the error terms follow autoregressive AR process, the model of stochastic business indicator is mathematically represented in the following model:

\[
y_i = c_i + \sum_{j=1}^{n} c_j y_j + \epsilon_i \quad (1)
\]

\[
u_t = \sum_{j=1}^{m} \rho_j \epsilon_{t-j} + \eta_t \quad (2)
\]

where \(y\) is an observable business indicator, \(c\) is a unique and latent business indicator, \(\epsilon\) is an error term, \(i\) is the number of observable indicators, \(n\) is the number of lags of AR process for \(c\), \(m\) is the number of lags of AR process for \(u\), and \(\rho\) is a parameter.

Using lag operator \(L\), above model can be expressed as follows:

\[
y_t = \sum_{i=0}^{n} \sum_{j=0}^{m} \rho_{ij} y_{t-j} + \epsilon_t \quad (3)
\]

\[
u_t = \sum_{j=0}^{m} \rho_{uj} \epsilon_{t-j} + \eta_t \quad (4)
\]

Here, \(\rho\) represents a lag polynomial of \(\rho = \rho_0 L^0 + \rho_1 L^1 + \ldots + \rho_n L^n\) and \(\eta\) does that of \(\eta = \eta_0 L^0 + \eta_1 L^1 + \ldots + \eta_m L_m\). On the other hand, error term \(\epsilon\) is a scalar stochastic variable that follows \(\epsilon \sim N(0, \Omega)\), and \(\eta\) is too a scalar stochastic variable that follows \(\eta \sim N(0, \Sigma)\). Of course, \(\Omega\) is a null matrix.

Since this model for stochastic business indicator includes latent variables, the equation system is represented as a state space model. According to Okusa, the generalized state space representation of the stochastic business indicator is as follows:

\[
\begin{bmatrix}
\dot{c}_t \\
\dot{u}_t \\
\end{bmatrix} =
\begin{bmatrix}
c_t \\
c_t - n \\
\vdots \\
c_t - n + m \\
u_t \\
u_t - \rho_0 \\
\vdots \\
u_t - \rho_m \\
\end{bmatrix}
\]

\[
y_t = Z_t \begin{bmatrix}
c_t \\
u_t \\
\end{bmatrix} + \epsilon_t
\]

\[
\begin{bmatrix}
c_t \\
u_t \\
\end{bmatrix} = \begin{bmatrix}
n_0 \\
m_0 \\
\vdots \\
n_m \\
\end{bmatrix}
\]
Transit equation

\[\mathbf{X} = \mathbf{I} \cdot \mathbf{X} + \mathbf{O} \]

Disturbance term

\[\mathbf{O} \sim \mathcal{N} \left(\mathbf{O}_{i}, \mathbf{O}_{m} \right) \]

where

\[\mathbf{Z} = \begin{bmatrix} \mathbf{O}_{h,n} & \mathbf{I}_{i} & \mathbf{O}_{i,m} \end{bmatrix} \]

\[\mathbf{X} = \begin{bmatrix} \mathbf{O}_{i} & \mathbf{O}_{i} & \mathbf{O}_{i} & \mathbf{O}_{i} \\ \mathbf{O}_{i} & \mathbf{O}_{i} & \mathbf{O}_{i} & \mathbf{O}_{i} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{O}_{i} & \mathbf{O}_{i} & \mathbf{O}_{i} & \mathbf{O}_{i} \end{bmatrix} \]

\[\mathbf{O}_{im,n} \]

\[\mathbf{O}_{m,n} \]

\[\mathbf{I}_{i} \]

\[\mathbf{O}_{i} \]

Of course, the state variable \(\mathbf{O} \) is an \(n + m \) vector. According to usual definition, \(\mathbf{I}_{k} \) means a unit matrix with \(k \) rows and columns, and \(\mathbf{O}_{k,l} \) represents a null matrix with \(k \) rows and \(l \) columns. \(\mathbf{O} \) means a diagonal matrix with its elements of \(\text{diag} \mathbf{O} = [h, h, \ldots, h, \ldots, h, h, \ldots, h] \) while \(h \) is a diagonal element of \(\mathbf{H} \). is a parameter of \(n \)-degree lag polynomial for the latent index. \(\mathbf{O} \) is a diagonal matrix with elements of \(\mathbf{O} \), which is a parameter of \(m \)-degree lag polynomial for the error term \(\mathbf{u} \).

Since above-mentioned general form of the state space model quoted from Okusa is quite complicated, this study assumes following three points, which seem adequately plausible, to simplify the model according to existing literatures, including Stock and Watson and Okusa.

- The observable indicators are taken from production, labor, income, and consumption, i.e., \(Y \)
- The unique and latent business indicator \(c \) is subject to AR process, i.e., \(n \)
- The error term \(\mathbf{u} \) is subject to AR process, i.e., \(m \)

Above model for stochastic business indicator will be transformed into following simplified state space model system:

Observation Equations

\[\begin{bmatrix} y_{t} \end{bmatrix} = \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} \mathbf{O}_{i} \end{bmatrix} + \begin{bmatrix} \mathbf{u}_{t} \end{bmatrix} \]
Transit Equations

\[
\begin{bmatrix}
 c_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7 \\
 u_8 \\
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7 \\
 u_8 \\
\end{bmatrix}
\]

This simplified state space model will be solved with Kalman filter presented at Kalman Æknife. In this study, further explanation for state space models and Kalman filter will be out of target. For comprehensive information on application of a state space model to econometric field, Harvey Æknife is one of the most useful literatures if necessary. Apart from Kalman’s original paper, Meinhold and Singpurwalla Æknife, Snyder and Forbes Æknife, and Grewal and Andrews Æknife will provide further information on Kalman filter and its algorithm. Some relevant internet sites, including ÆKalman Filter Æknife of the Department of Computer Science at the University of North Carolina, where the reprint of Kalman Æknife is uploaded, are also helpful.

3. Data and Estimation Results

According to the assumption and the model presented in the previous section, following actual and observable data are employed Æknife

- **Production** ÆIndex of Industrial Production ÆMining and Manufacturing Æpublished by the Ministry of Economics, Trade and Industry, seasonally adjusted series.
- **Employment** ÆIndex of Non-Scheduled Worked Hours Æestablishments with Æemployees or more Æpublished by the Ministry of Health, Labor and Welfare, seasonally adjusted series.
- **Income** ÆReal Wage Index of Total Cash Earnings Æestablishments with Æemployees or more Æpublished by the Ministry of Health, Labor and Welfare, seasonally adjusted series.
- **Consumption** ÆRetail Commercial Sales Value of Monthly Report on the Current Survey of Commerce published by the Ministry of Economics, Trade and Industry, adjusted to real term by Consumer Price Index published by the Statistics Bureau, and seasonally adjusted by X Æknife with a default option by author.

3 http://www.cs.unc.edu/~welch/Kalman.html
4 All data are monthly and available from January to December Æknife
First of all, Augmented Dickey-Fuller (ADF) unit root tests based on Dickey and Fuller are completed in order to check the data generating process of relevant above four data. Table 1 reports the test results.

Table 1: Results of ADF Tests

<table>
<thead>
<tr>
<th></th>
<th>log level</th>
<th>log difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t-Statistic</td>
<td>p-value</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Lag length are decided according to Akaike Information Criteria based on Akaike Information Criteria under the condition of maximum 12 months. P-value is measured at a one-sided basis on MacKinnon.

Source: Author

According to the results of ADF tests, log first-order differential series reject the existence of unit root for all relevant data such as production, employment, income, and consumption, while log level series do not. Hence, log differential series will be employed for estimation. Table 2 reports their descriptive statistics. All data are available from February 2013 to December 2017.

Table 2: Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Production</th>
<th>Employment</th>
<th>Income</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Dev</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jarque-Bera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum Sq. Dev</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Taking first-order differential series, an observation will be missed.
Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Production</th>
<th>Employment</th>
<th>Income</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Author’s calculation

Based on above model and data, the unique and latent business indicator is estimated. Table 1 reports the estimation results. The parameters for production and employment are rela-

Table 1 Estimation Results

<table>
<thead>
<tr>
<th></th>
<th>parameter</th>
<th>std. error</th>
<th>t-statistics</th>
<th>R² adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Author’s estimation

Figure 1 Stochastic Business Indicator and Index of Business Conditions

Note: Same as Figure 1

Source: Cabinet Office data and author’s estimation
tively large, while those for income and consumption are small. This fact indicates the sensitivity to business cycle, of course.

Figure 1 depicts the estimated stochastic business indicator SWI compared with the coincident index of Indexes of Business Conditions CI calculated by the Cabinet Office, the Government of Japan.

Although the estimated stochastic business indicator SWI does not show clear cycllical movements in the first half of 1980s, after the bubble economy that began in late 1980s, the SWI indicates distinct cycles. To check properties, CI and SWI are decomposed to cycle and trend series using Hodrick-Prescott filter based on Hodrick and Prescott's method. The smoothness parameter λ is set at $\lambda=1600$ according to wide and common consensus among economists. Defining the GAP as percentage ratio of cycle series to trend, i.e., $GAP=\frac{Cycle}{Trend}$, estimated SWI movement during the estimation period fits quite well to CI as Figure 1 depicts.

![Figure 1: GAP of Stochastic Business Indicator and Index of Business Conditions](image_url)

Note: The unit of vertical axis is percent of cycle series to trend.
Same as Figure 1
Source: Author’s estimation

Here, Table 1 compares four kinds of peak and trough months of Japan’s business cycle, identified by the official reference dates of the Government of Japan (CAO), turning points of the Indexes of Business Conditions (CI), the reference chronology of the turning points of the OECD Composite Leading Indicator (OECD) and the turning points of the estimated stochastic business indicator in this study (SWI). They are not necessarily coincident, but siz-

6 See http://www.oecd.org/document/21/0,3746,en_2649534-37554248_37694910_1_1_1_1,00.html Accessed on March 1, 2023.
ably close to each other, including the trough of the latest recession. While the OECD Composite Leading Indicator points to April, both CI and SWI identify March as the trough, which appear quite plausible and acceptable among Japanese economists.

<table>
<thead>
<tr>
<th>Table</th>
<th>Peak and Trough Months of Business Cycles in Japan after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak Month</td>
</tr>
<tr>
<td>CAO</td>
<td>Feb. 10</td>
</tr>
<tr>
<td>CI</td>
<td>Oct. 10</td>
</tr>
<tr>
<td>OECD</td>
<td>Feb. 10</td>
</tr>
<tr>
<td>SWI</td>
<td>Dec. 10</td>
</tr>
</tbody>
</table>

Note: CAO’s peak month of October for the latest recession is provisional.

The OECD Composite Leading Indicator identifies a recession with its peak as June and its trough as August, but it is not included in the table.

Source: CAO CI OECD SWI

4. Conclusion

This study has successfully estimated the stochastic business indicator based on Stock-Watson methodology and has identified the trough month of the latest recession in Japan as March, which many economists will support. The results are too consistent to coincident Index of Business Conditions calculated by the Government of Japan.

Concerning to identification of business cycle turning point, this study focuses on Indexes of Business Conditions of the Government of Japan, which is based on observable indicators, and stochastic approach, suggested by Stock and Watson. The latter approach is also employed for many economists. Melo V. et al. adopts for Colombian economy. Picchetti and Toledo estimate Brazilian industrial index and, Lemoine applies to the UK, French, German and the Euro-zone business cycles. Additionally, many other methodologies are also explored. Hamilton introduces a Markov regime switching model and, Kim and Nelson propose a Bayesian approach based on a Markov-switching model. Yoshioka utilizes GDP gap estimated with a state space model for business cycle dating and, Yoshioka employs Markov Regime Switching model. Fukuda and
Onodera also propose a new index of coincident economic indicators in Japan to improve the forecast performance. Relating only to business cycle dating, there are plenty of literatures, including Harding and Pagan, Artis et al, and Chauvet and Hamilton, which propose a quarterly real-time GDP based recession probability index.

Finally, it is noteworthy to stress that identification of business cycle is essentially important for the macroeconomic stabilization policy.

References

Tokyo University, June 1979

Harding, Don and Adrian Pagan. Dissecting the cycle: a methodological investigation *Journal of Monetary Economics*, March 1990, pp. 35–50

Melo V., Luis Fernando, Fabio Nieto, and Mario Ramos V. A Leading Index for the Colombian Economic Activity *Borradores de Economía No. 36*, Banco de la Republica Colombia, May 1992

Okusa, Y. A Probability Model of the Coincident Economic Index in Japan *Doshisha University economic review*, December, pp. 159–83 in Japanese

Picchetti, Paulo and Celso Toledo. Estimating and Interpreting a Common Stochastic

Component for the Brazilian Industrial Production Index \textit{Revista Brasileira de Economia} \textit{\textsc{\textregistered}}, Graduate School of Economics, Getulio Vargas Foundation, April 2009, pp 225–238

Snyder, Ralph D. and Catherine S. Forbes \textit{Understanding the Kalman Filter \textregistered An Object Oriented Programming Perspective \textregistered Working Paper \textsc{\textregistered}}, Department of Econometrics and Business Statistics, Monash University, December 2007

Stock, James H. and Mark W. Watson \textit{New Indexes of coincident and leading economic indicator \textregistered NBER Macroeconomic Annual \textsc{\textregistered}}, \textsc{\textregistered}, pp 235–281

Stock, James H. and Mark W. Watson \textit{A Probability Model of the Coincident Economic Indicators \textregistered Lahiri, Kajal and Geoffrey H. Moore eds. \textit{Leading Economic Indicators \textregistered New Approaches and Forecasting Records}, Chapter \textsc{\textregistered}, Cambridge University Press, Cambridge, \textsc{\textregistered}, pp 235–281

Yoshioka, Shinji \textit{A Study in Peak Identification of Japanese Current Recession \textregistered An Approach with Output Gap Estimated by State Space Model \textregistered Nagasaki University Annual Review of Southeast Asian Studies \textsc{\textregistered}}, Research Institute of Southeast Asia, Faculty of Economics, Nagasaki University, March 2008, pp 13–29 in Japanese \textsc{\textregistered}

Yoshioka, Shinji \textit{Estimation of Peak Month for Japanese Current Recession \textregistered An Approach Employing Markov-Regime-Switching Model \textregistered Nagasaki University Journal of Business and Economics \textsc{\textregistered}, Faculty of Economics, Nagasaki University, June 2008, pp 55–65 in Japanese \textsc{\textregistered}