Two cases of retrobulbar meningioma excised by skull base approaches

Fujioka, Masaki; Baba, Hiroshi; Toda, Keisuke; Hirano, Akiyoshi

Rare Tumors, 2(4), pp.172-173; 2010

2010-10-07

http://hdl.handle.net/10069/24561

©Copyright M. Fujioka et al., 2010; This work is licensed under a Creative Commons Attribution 3.0 License.
Two cases of retrobulbar meningioma excised by skull base approaches

Masaki Fujioka,1 Hiroshi Baba,2 Keisuke Toda,3 Akiyoshi Hirano3

Departments of 1Plastic and Reconstructive Surgery; 2Neurosurgery and National organization Nagasaki Medical Center, Nagasaki, Japan; 3Department of Plastic and Reconstructive Surgery, Nagasaki University, Nagasaki, Japan

Abstract

We present two cases of orbital meningioma which were totally excised by a neurosurgical and craniofacial team using skull base approaches.

Introduction

We present two cases of orbital meningioma which were totally excised by a neurosurgical and craniofacial team using skull base approaches.

Orbital meningioma is relatively rare; they accounted for only 4% of orbital masses in a series of 1246. Although locally invasive, meningioma has a favorable prognosis if completely removed.

Case Reports

Case #1

A 6-year-old girl consulted the department of neurosurgery complaining of acute loss of vision in the left eye of 6 months' duration. Visual activity was 1.2/1.2 OD and no light perception OS. Magnetic resonance imaging (MRI) indicated a mass around the optic nerve within the left orbit (Figure 1).

Tumor excision was performed via frontal craniotomy and orbitotomy. Because the mass measuring 2.3x0.5 cm was adherent to the optic nerve, it was excised completely along with the optic nerve (Figure 2). Histological examinations showed that the tumor consisted of bundles of spindle-shaped cells within a psammomatous body. Immunohistochemical staining revealed that the tumor cells were positive for keratin and involucrin, were negative for S-100 protein and epithelial membrane antigen. MRI of the orbit after surgery revealed no residual tumor. There was no evidence of recurrence 3 years after surgery.

Discussion

Extracranial meningiomas are unusual tumors that sometimes occur in the skin or soft tissue of the scalp or along the vertebral axis. In particular, orbital meningiomas are so rare that only 53 (4%) were found in 1264 consecutively examined patients for an orbital mass, and Dalia and Neil reported that optic nerve sheath meningiomas comprise 1-2% of all meningiomas.

Although extracranial meningiomas arise from ectopic arachnoidal cells, their precise presentation suggests two pathogenetic mechanisms. One form, termed type I, usually arises from cutaneous lesions and is believed to be the result of abnormalities of neural tube closure. The second form (type II) arises around sensory organs or along the cranial and spinal nerves. Orbital meningiomas arise from the skull base and spread via the sphenoid ridge and the optic canal. Case #1 originating in the arachnoid layer of the optic nerve, was categorized as type II and was designated a typical optic sheath meningioma. Although its form was not irregular, the tumor of case 2 was also considered to have originated from the optic nerve because it was separated from the intracranial meninges.

Most orbital meningiomas present with a slowly progressive optic neuropathy characterised by a variable loss of visual acuity. However, a small series showed acute loss of vision of 6 months’ duration. Approximately 4-7% of optic nerve sheath meningiomas occur in childhood, and they grow faster, involve intracranial space more frequently than occurs in adults.

Traditionally, orbital meningiomas have been observed without intervention, or treated by excision of the tumor along with the nerve because of difficulty of surgical approach. Attempts to excise these tumors while keeping the optic nerve intact had been unsuccessful. Berman et al. reviewed 130 articles and evaluated their over 100 cases of orbital meningioma, and reported that the short-term efficacy of stereotactic fractionated radiotherapy (SFR) in preserving or improving vision appears to be excellent, with more than half of the patients having an improvement within 3 months following treatment. They concluded that SFR is the best option for most cases of progressive or advanced disease. However, late toxicity due to irradiation are sometimes seen including the optic nerve, retina, pituitary gland, and the white-matter tracts of the brain. Retinal injury has been described with exposures of more than 50 Gy. Late non-ocular side effects were also reported such as pituitary dysfunction and cerebral punctate small-
vessel fallout. These undesirable complications bring continuous distress for the patients and decrease their quality of life. Extensive removal of orbital meningioma which is located in the posterior orbit is recommended because it prevents recurrence. Orbital apex tumors were considered to be unresectable previously, because of the risks involved with surgical intervention. However, skull base approaches by a neurosurgical and craniomaxillofacial team provide excellent exposure of important neurovascular structures and enable total and extensive ablation of a retrobulbar mass. We conclude that basal frontal craniotomy contributes to a successful, complete excision of retrobulbar meningiomas. Thus, extensive removal of orbital meningioma through an extradural route is recommended as a favorable option for patients with progressive or advanced retrobulbar meningioma.

References