<table>
<thead>
<tr>
<th>Title</th>
<th>On isoperimetric problem in a complex plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kajimoto, Hiroshi; Eguchi, Kazuhiro</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学教育学部紀要 [自然科学 108-1]: 1-4, 2011</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-03-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/25002</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE

http://naosite.lb.nagasaki-u.ac.jp
On isoperimetric problem in a complex plane

Hiroshi KAJIMOTO and Kazuhiro EGUCHI

Department of Mathematical Science, Faculty of Education
Nagasaki University, Nagasaki 852-8521, Japan
e-mail: kajimoto@nagasaki-u.ac.jp
(Received October 29, 2010)

Abstract
Classical isoperimetric inequality is shown in a complex plane. In a complex plane we can use effectively the complex Fourier expansion in the computations.

0 Introduction: isoperimetric problem and isoperimetric inequality in a plane

Let C be a simply closed curve in a plane and D be the domain enclosed by C. Let l be the length of C and A be the area of D. Then the isoperimetric inequality is

$$A \leq \frac{l^2}{4\pi}.$$

The classical isoperimetric problem claims that for every simply closed curve C in a plane the isoperimetric inequality holds and that its equality holds if and only if C is a circle of radius $l/2\pi$.

Since the radius of a circle which has the length l is $r = l/2\pi$ the circle has area $\pi(l/2\pi)^2 = l^2/4\pi$. The isoperimetric inequality thus shows that among all simply closed curves of length l, circles of radius $l/2\pi$ have the largest area $l^2/4\pi$ and the equality condition shows that the largest area is attained only by those circles.

We show the claim of isoperimetric problem in a complex plane C. The proof gets through along the classical line [1, 4]. The use of the complex Fourier series in a complex plane makes the reasoning a little straightforward.
1 A closed curve in \mathbb{C} and its Fourier expansion

By similitude it suffices to consider curves of length $l = 2\pi$ and to show the isoperimetric inequality: $A \leq \pi$. Let C be a simply closed curve of length 2π in a complex plane \mathbb{C}. We assume that C is piecewise smooth and is parametrized by its arc length. Let

$$C : z(s) = x(s) + iy(s), \quad 0 \leq s \leq 2\pi, \quad z(0) = z(2\pi)$$

be the parametrization of a closed curve $z : [0, 2\pi] \rightarrow \mathbb{C}$. Then the tangent vector at $z(s)$ is $z'(s) = x'(s) + iy'(s)$. When the curve is parametrized by its arc length s, the length of the tangent vector is one: $|z'(s)| = 1$ (except finite points). And the total length of C is

$$2\pi = \int_C |z'(s)| \, ds = \int_0^{2\pi} |z'(s)| \, ds.$$

Expand $z(s)$ into the complex Fourier series:

$$z(s) = \sum_{n \in \mathbb{Z}} c_n e^{ins}, \quad c_n = \int_0^{2\pi} z(s) e^{-ins} \frac{ds}{2\pi}.$$

By the term-by-term differentiation

$$z'(s) = \sum_{n=-\infty}^{\infty} ic_ne^{ins}.$$

The condition: $1 = |z'(s)|^2 = z'(s) \overline{z'(s)}$ thereby becomes

$$1 = \sum_{n=-\infty}^{\infty} ic_ne^{ins} \sum_{m=-\infty}^{\infty} -ic_me^{-ims} = \sum_{n,m=-\infty}^{\infty} c_n \overline{c_m} me^{i(n-m)s}.$$

Integrating $\int_0^{2\pi} * ds / 2\pi$ term by term, the only terms: $n = m$ remain,

$$1 = \sum_{n=-\infty}^{\infty} c_n \overline{c_n} n^2 = \sum_{n=-\infty}^{\infty} |c_n|^2 n^2$$

(1)

since $\int_0^{2\pi} e^{i(n-m)s} ds / 2\pi = \delta_{nm}$. This is the condition of the curve length $l = 2\pi$.

2 The Green formula and isoperimetric inequality

Let D be a bounded domain in a plane with piecewise smooth boundary ∂D. Let $P(x, y)$ and $Q(x, y)$ be C^1-functions near \bar{D}. Then the Green formula is:

$$\iint_D \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} \right) \, dx \, dy = \oint_{\partial D} P \, dy + Q \, dx.$$

The formula states a basic relation between integration in a region and integration over its boundary in a plane. So put $P = x, Q = -y$. Then if $A = \text{area}(D), \quad 2A = \oint_{\partial D} x \, dy - y \, dx.$

In \mathbb{C} we have $xdy - ydx = (\bar{z}dz - zd\bar{z})/2i = \text{Im}(\bar{z}dz)$ ($dz = dx + idy, \ d\bar{z} = dx - idy$).

For a curve $C : z = z(s) \ (0 \leq s \leq 2\pi)$ and its enclosed region D in \mathbb{C} we have

$$2A = \text{Im} \oint_C \bar{z}dz = \text{Im} \int_0^{2\pi} \bar{z}(s)z'(s)ds.$$

We calculate quantity $A/\pi = 2A/2\pi$.

$$\frac{1}{2\pi} \int_0^{2\pi} \bar{z}(s)z'(s)ds = \int_0^{2\pi} \sum_{n=-\infty}^{\infty} c_n e^{-ins} \sum_{m=-\infty}^{\infty} ic_m m e^{ims} \frac{ds}{2\pi}$$

$$= i \sum_{n,m=-\infty}^{\infty} c_n c_m m \int_0^{2\pi} e^{i(m-n)s} \frac{ds}{2\pi} = i \sum_{n=-\infty}^{\infty} |c_n|^2 n.$$

Hence we get

$$\frac{A}{\pi} = \frac{2A}{2\pi} = \frac{1}{2\pi} \text{Im} \int_0^{2\pi} \bar{z}(s)z'(s)ds = \sum_{n=-\infty}^{\infty} |c_n|^2 n.$$

(2)

Subtract (2) from (1) we have

$$1 - \frac{A}{\pi} = \sum_{n=-\infty}^{\infty} |c_n|^2 n^2 - \sum_{n=-\infty}^{\infty} |c_n|^2 n = \sum_{n=-\infty}^{\infty} |c_n|^2 (n^2 - n)$$

$$= \sum_{n=-\infty}^{\infty} |c_n|^2 \left\{ \left(n - \frac{1}{2} \right)^2 - \frac{1}{4} \right\} \geq 0.$$
Hence we get
\[A\pi = 2 \quad A^{2}\pi = 1 \]

\[
\int_{\pi}^{2\pi} z(s) z'(s) ds = \infty \sum_{n=-\infty}^{\infty} |c_n|^2 \]

(2)

Subtract (2) from (1) we have
\[
1 - A\pi = \infty \sum_{n=-\infty}^{\infty} |c_n|^2 - \infty \sum_{n=-\infty}^{\infty} |c_n|^2 = \infty \sum_{n=-\infty}^{\infty} |c_n|^2 \]

\[
\{ (n - 1/2)^2 - 1/4 \} \geq 0 \]

since \(n \in \mathbb{Z} \). This proves the isoperimetric inequality for the curve \(C \).

Because \(n^2 - n = n(n - 1) = 0 \) iff \(n = 0, 1 \), the equality above holds if and only if all \(c_n = 0 \) except \(n = 0, 1 \). In the case in which the equality holds the condition (1) becomes \(1 = |c_1|^2 \) and the Fourier expansion of \(z(s) \) has the only two non-zero terms:

\[z(s) = c_0 + c_1 e^{is}, \quad (0 \leq s \leq 2\pi). \]

Since \(|c_1| = 1 \) this is exactly the parametrization of a circle of radius one and of center \(c_0 \) in the complex plane \(\mathbb{C} \).

References

