【原著・臨床】

Levofloxacin 注射剤の呼吸器感染症患者における安全性成績

堀　誠治1)・河　野　茂2)
1) 東京慈恵会医科大学薬学部薬理学講座*（現 同大学感染制御部）
2) 長崎大学病院

（平成 22 年 11 月 10 日受付・平成 23 年 2 月 15 日受理）

Levofloxacin (LVFX) 注射剤の安全性プロファイルを明らかにするため、日本人呼吸器感染症患者を対象とした 2 つの臨床試験成績（342 例）を併合し、評価した。さらに、併合した成績より得られた LVFX 注射剤の安全性プロファイルを、すでに報告されている LVFX 経口剤の呼吸器感染症患者を対象にした臨床試験成績（152 例）と比較した。

注射剤での有害事象および副作用発現率は、72.8%（249/342 例）および48.0%（164/342 例）であった。注射剤で5% 以上認められた副作用は、注射部位紅斑15.2%（52/342 例）、ALT 増加10.2%（35/342 例）、AST 増加8.5%（29/342 例）、注射部位不適感8.7%（23/342 例）、下痢5.0%（17/342 例）、γ-GTP 増加5.0%（17/342 例）であった。

有害事象および副作用発現率を経口剤と比較すると、いずれも注射剤で高い傾向であったが、注射剤で約2 割に認められた注射部位反応を除くと、注射剤の有害事象および副作用発現率は63.2%（216/342 例）および33.6%（115/342 例）となり、経口剤の59.2%（90/152 例）および39.5%（60/152 例）と同程度であった。

経口剤と比較すると、注射剤での特有な副作用として投与経路に起因した事象である注射部位反応が認められたが、その注射部位反応を除くと、LVFX 注射剤と経口剤の安全性プロファイルに大きな差はないと考えられた。

Key words: levofloxacin injection, safety profile, respiratory tract infection

Levofloxacin (LVFX) は、各科領域感染症に有効なキノロン系薬として、国内外で広く使用され、現在までに 120 を超える国と地域で販売されている。日本では、1993年11月に経口剤（クラビット10 銠粒）が、1 回 100 mg 1 日 1 回投与で発売され、安全性の高い有効抗菌薬として汎用されてきた。その後、Pharmacokinetics-Pharmacodynamics (PK-PD) 理論に基づき、より適正な用法・用量と考えられる1 回 500 mg 1 日 1 回投与で、2009年に承認された2)。

一方、LVFX 注射剤に関しては呼吸器感染症を対象とした臨床試験が実施され、その用量は、国内での抗菌薬感受性サーベイランス成績を参考に、PK-PD 理論から 1 回 500 mg 1 日 1 回投与と設定された。この用量・用法において、中等度および慢性呼吸器病変の二次感染の患者を対象に、一般臨床試験が実施され、有効性および安全性が検討された。また、中等度肺炎患者を対象とした比較試験では、ceftiraxone (CTRX) を対照に、臨床効果の検討がなされた。

本論文では、LVFX 注射剤の安全性プロファイルを明らかにするため、一般臨床試験および比較試験の有害事象・副作用を併合して評価した。さらに、日本人における LVFX 注射剤の安全性プロファイルを、すでに報告されている LVFX 経口剤の呼吸器感染症を対象とした臨床試験成績3)を再評価し、比較検討した。

I. 対象と方法

1. 対象

LVFX 注射剤の、中等度肺炎および慢性呼吸器病変の二次感染の患者を対象とした一般臨床試験（以下、注射剤一般試験）および中等度肺炎の患者を対象とした比較試験（以下、注射剤比較試験）の 2 試験にエントリーされた。安全性評価が可能であった症例を解析対象とした。

LVFX 注射剤の安全性評価対象症例数は、注射剤一般試験の 206 例、および注射剤比較試験の 136 例であり、計 342 例であった。この例数は、発生率 1% の事象を 95% の確率で検出可能となる数（300 例）に相当する。

LVFX 500 mg は、1 日 1 回、約 60 分かけて点滴静注し、授与期間は 7 ～ 14 日間とした。これらの試験は、2006 年 8 月～2008 年 10 月に実施された。

*東京都港区西新橋3-25-8
2. 安全性の判定・集計方法
治験薬投与開始以降に薬剤に起こったあらゆる好ましくない医学的事象（臨床検査値、バイタルサインの異常変動を含む）を有害事象とした。そのうち、治験担当医師が因果関係を否定しなかった事象を副作用とした。有害事象の収集期間は、治験薬投与開始から最終観察（治験薬投与終了/中止日の7～14日後）までとした。重症度は、「医薬品による治療症例における副作用、臨床検査値異常の判定基準」を参考に、治験担当医師が判定した。
報告された事象名をICH国際医薬品語彙集日本語版（MedDRA/J Ver.1.12.0）に読み替えて集計し、有害事象または副作用の発現例数、発現率を求めた。また、被験者背景（性别、年齢、体重、感染症疾患名、Ccr（Cockcroft-Gault式で算出）、合併症重症度）によりサブグループ化し、副作用の発現状況を解析した。

3. 注射部位反応の評価
本試験で評価した“注射部位反応”とは、治験薬を点滴静注した部位より体幹側の前腕および上腕に局所的に発現し、紅斑、そよ巖、疼痛などの症状・所見を伴うものとした。また、治験担当医師は、注射部位紅斑、注射部位そよ巖などの症状別に検査を観察・記録した。

4. LVFX 経口剤臨床試験における安全性成績との比較
LVFX注射剤の安全性プロファイルを、すでに報告されているLVFX経口剤の呼吸器感染症を対象とした一般臨床試験（以下、経口剤一般試験）の152例の安全性成績と比較した。なお、今回、経口剤と注射剤の安全性成績を比較するため、経口剤一般試験の成績について注射剤を同一のICH国際医薬品語彙集日本語版（MedDRA/J Ver.1.12.0）に読み替えて再集計した。

経口剤一般試験では、注射剤一般試験の対象疾患に加えて急性気管支炎の患者も対象とされ、投与方法はLVFX 500 mg 1日1回経口投与、投与期間は7日間であった。経口剤一般試験は2006年6月～2007年6月にかけて、注射剤の臨床試験とはほぼ同時に実施された。

全論文中では、注射剤一般試験および注射剤比較試験のLVFX注射剤投与例（342例）を“注射剤群”、経口剤一般試験のLVFX経口剤投与例（152例）を“経口剤群”と表記した。

なお、有害事象に関する治験担当医師の評価の妥当性
Table 2. Safety results overview

<table>
<thead>
<tr>
<th>Outcome</th>
<th>AE/ADR</th>
<th>LVFX i.v. (N = 342)</th>
<th>LVFX p.o. (N = 152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse events</td>
<td>AE</td>
<td>249 (72.8)</td>
<td>90 (59.2)</td>
</tr>
<tr>
<td></td>
<td>ADR</td>
<td>164 (48.0)</td>
<td>60 (39.5)</td>
</tr>
<tr>
<td>Serious adverse events</td>
<td>AE</td>
<td>14 (4.1)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td></td>
<td>ADR</td>
<td>2 (0.6)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Discontinuation due to adverse events</td>
<td>AE</td>
<td>15 (4.4)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td></td>
<td>ADR</td>
<td>14 (4.1)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Injection site reaction only</td>
<td>AE</td>
<td>89 (26.0)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ADR</td>
<td>69 (20.2)</td>
<td>—</td>
</tr>
<tr>
<td>Excluding injection site reactions</td>
<td>AE</td>
<td>216 (63.2)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ADR</td>
<td>115 (33.6)</td>
<td>—</td>
</tr>
</tbody>
</table>

Number of subjects (%)
AE: Adverse event, ADR: Adverse drug reaction

a) Reanalyzed data, S. Kohno et al.2

Table 3. Adverse drug reaction severity

<table>
<thead>
<tr>
<th>Number of subjects (%)</th>
<th>LVFX i.v.</th>
<th>LVFX p.o.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluateable number</td>
<td>342</td>
<td>152</td>
</tr>
<tr>
<td>Mild</td>
<td>144 (42.1)</td>
<td>56 (36.8)</td>
</tr>
<tr>
<td>Moderate</td>
<td>32 (9.4)</td>
<td>6 (3.9)</td>
</tr>
<tr>
<td>Severe</td>
<td>2 (0.6)</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of subjects (%)
Those experiencing more than one events coded with the same preferred term and differing in severity are counted based on the severest event.

a) Reanalyzed data, S. Kohno et al.2

を、同じ安全性評価専門家が確認した。

II. 結果

1. LVFX 注射剤の安全性成績

1) 被験者背景

注射剤群では、年齢の平均値（標準偏差）は60.5（162）歳、体重は55.6（11.8）kg、Ccrは79.2（29.3）mL/min。基礎疾患・合併症をもつ被験者は84.2％（288/342例）であり、基礎疾患・合併症の重症度（呼吸器感染症における新規抗微生物薬の臨床評価法（案）6の判定基準）は、軽症が42.4％（145/342例）、中等症が41.8％（143/342例）であった（Table 1）。

2) LVFX 注射剤の有害事象・副作用発現状況

注射剤群の有害事象発現率は72.8％（249/342例）、副作用発現率は48.0％（164/342例）であり（Table 2）。ほとんどの副作用は軽度から中等度と判定された（Table 3）。また、特定の背景因子により副作用の発現が上昇する傾向は認められなかった（Table 4）。発現率5％以上の副作用とその発現率は、注射部位反応が15.2％（52/342例）、注射部位誘発症が6.7％（23/342例）、下痢が5.0％（17/342例）、ALT増加が10.2％（35/342例）、AST増加が8.5％（29/342例）、γ-GTP増加が5.0％（17/342例）であった（Table 5）。

注射部位反応の副作用は、342例中69例（20.2％）に185件認められ、特定の背景因子により注射部位反応の副作用発現が上昇する傾向は認められなかった。注射部位反応の発現後の経過は、97.8％（181/185例）が無処置で回復し、93.0％（172/185例）が発現時に速やかに回復した。注射部位反応の発現により投与中止に至った被験者全体の6.0％（2/342例）であり、いずれも無処置で投与中止後速やかに回復した。注射部位反応の症状状態では、注射部位紅斑を単独で発現した被験者で6.7％（23/342例）と最も多く、次いで、5.8％（20/342例）の被験者に注射部位紅斑+注射部位誘発症が認められた（Table 6）。

注射部位疼痛や注射部位腫脹などを比較して、注射部位紅斑と注射部位誘発症の発現率が高かった。

疾患別肝機能検査値の異常に関連する副作用発現率は、市中肺炎および慢性呼吸器病変の二次感染で、ALT増加が11.3％（34/301例）および24.1％（1/14例）、AST増加が9.0％（27/301例）および4.9％（2/41例）、γ-GTP増加が5.3％（16/301例）および2.4％（1/41例）、血中ALP増加とLDH増加は市中肺炎患者のみでそれぞれ3.3％（10/301例）、0.7％（2/301例）であり、いずれも市中肺炎の被験者で発現頻度が高かった（Table 5）。

因縁関係が否定されなかった重篤な有害事象として、間質性肺炎（担当医師報告名：急性間質性肺炎）および肺炎（担当医師報告名：薬剤性肺炎）が各1例報告された。転帰は、間質性肺炎の1例が死亡、肺炎の1例が回復であった。間質性肺炎は、治験薬投与前から存在する陰影が悪化していることから、臨床的には薬剤性の可能性は低いが、薬剤の関与は完全に否定できないと判定された。肺炎は、LVFXのリンパ球刺激試験結果、抗炎症薬の効果および臨床経過から因果関係ありと判定された。
Table 4. Adverse drug reaction subgroup analysis

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>LVFX i.v.</th>
<th></th>
<th>LVFX p.o.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of</td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td>subjects</td>
<td>cases with</td>
<td>of subjects</td>
<td>cases with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADRs (%)</td>
<td></td>
<td>ADRs (%)</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>227</td>
<td>116 (51.1)</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>115</td>
<td>48 (41.7)</td>
<td>74</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>&lt; 65</td>
<td>167</td>
<td>75 (44.9)</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>65 ≤ 75</td>
<td>106</td>
<td>62 (58.5)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>75 ≤ 80</td>
<td>53</td>
<td>23 (43.4)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>≥ 80</td>
<td>16</td>
<td>4 (25.0)</td>
<td>12</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>&lt; 40</td>
<td>15</td>
<td>6 (40.0)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>40 ≤ 60</td>
<td>214</td>
<td>95 (44.4)</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>60 ≤ 80</td>
<td>102</td>
<td>56 (54.9)</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>≥ 80</td>
<td>11</td>
<td>7 (63.6)</td>
<td>3</td>
</tr>
<tr>
<td>Diagnosis of infectious condition</td>
<td>Community-acquired pneumonia</td>
<td>301</td>
<td>151 (50.2)</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Secondary infection of chronic respiratory disease</td>
<td>41</td>
<td>13 (31.7)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Acute bronchitis</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Ccr (mL/min)</td>
<td>&lt; 20</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20 ≤ 50</td>
<td>48</td>
<td>20 (41.7)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>50 ≤ 80</td>
<td>144</td>
<td>70 (48.6)</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>≥ 80</td>
<td>149</td>
<td>74 (49.7)</td>
<td>88</td>
</tr>
<tr>
<td>Underlying disease and/or complication</td>
<td>No</td>
<td>54</td>
<td>28 (51.9)</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>288</td>
<td>136 (47.2)</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>342</td>
<td>164 (47.9)</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Mild</td>
<td>145</td>
<td>66 (45.5)</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>143</td>
<td>70 (49.0)</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>No</td>
<td>316</td>
<td>148 (46.8)</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>26</td>
<td>16 (61.5)</td>
<td>17</td>
</tr>
<tr>
<td>Related to renal impairment</td>
<td>No</td>
<td>331</td>
<td>158 (47.7)</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>11</td>
<td>6 (54.5)</td>
<td>4</td>
</tr>
<tr>
<td>Related to hepatic impairment</td>
<td>No</td>
<td>313</td>
<td>152 (48.6)</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>29</td>
<td>12 (41.4)</td>
<td>7</td>
</tr>
<tr>
<td>Related to heart impairment</td>
<td>No</td>
<td>295</td>
<td>140 (47.5)</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>47</td>
<td>24 (51.1)</td>
<td>12</td>
</tr>
</tbody>
</table>

* Reanalyzed data, S. Kohno et al.²

上記の重篤な有害事象による中止例のほか、注射剤群において投与中止にいたった有害事象は 4.4% (15/342例)。副作用は 4.1% (14/342例) に認められた。その内訳は、ALT 増加が 1.2% (4/342例)、AST 増加が 0.9% (3/342例)、インフルエンザ、謎妄、幻覚、頭痛、感覚鍾麻、下痢、紅斑、そう疹症、背部痛、注射部位紅斑、発熱、口渇、血液比価増加、γ-GTP 増加、顆粒球数減少、ALP 増加がそれぞれ 0.3% (1/342例) であった。このうち、インフルエンザの 1 例は因果関係が否定された。これらの事象は、投与中止または処置によりいずれも回復した。

今回実施された臨床試験では、キノン系薬で注意すべき副作用である唾液軽減、低血糖・QT 延長は報告されなかった。

2. LVFX 注射剤および経口剤の安全性成績の比較

1) 被験者背景比較

注射剤群と経口剤群の被験者背景を比較した。経口剤群では 8 割以上の被験者は外来治療であるのに対し、注射剤群は全員が入院治療であった。注射剤群では、基礎疾患・合併症をもつ被験者の割合が高く、その重症度も注射剤群では中等症が多く認められた（Table 1）。

注射剤群では、平均投与日数は 8.0（標準偏差 2.8）日。投与期間は 1～14 日間であり、投与期間が 8～14 日間であった被験者は 45.9％ (157/342例) であった。一方、経口剤群では、平均投与日数は 6.9（標準偏差 0.7）日。投与期間は 2～7 日間であり、152名中 144名は 7日間投与であった（Table 7）。

2) 有害事象および副作用の発現状況

有害事象および副作用発現率は、経口剤群と比較して
Table 5. Adverse drug reactions in intravenous and oral LVFX (adverse drug reaction incidence by system organ class of ≥ 1%)

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>LVFX i.v.</th>
<th>LVFX p.o.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychiatric disorders</td>
<td>9 (2.6)</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Anxiety</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Delirium</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Hallucination</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Insomnia</td>
<td>8 (2.3)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Affect lability</td>
<td>0</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>6 (1.8)</td>
<td>14 (9.2)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1 (0.3)</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>0</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Headache</td>
<td>3 (0.9)</td>
<td>8 (5.3)</td>
</tr>
<tr>
<td>Hypoaesthesia</td>
<td>1 (0.3)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Paraesthesia</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Tremor</td>
<td>0</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>4 (1.2)</td>
<td>0</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Interstitial lung disease</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>28 (15.1)</td>
<td>23 (15.1)</td>
</tr>
<tr>
<td>Abdominal discomfort</td>
<td>1 (0.3)</td>
<td>4 (2.6)</td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>1 (0.3)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>2 (0.6)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Abdominal pain upper</td>
<td>0</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Constipation</td>
<td>6 (1.8)</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>17 (5.0)</td>
<td>8 (5.3)</td>
</tr>
<tr>
<td>Gastritis erosive</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Glossitis</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>3 (0.9)</td>
<td>12 (7.9)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>2 (0.6)</td>
<td>8 (5.3)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>4 (1.2)</td>
<td>4 (2.6)</td>
</tr>
<tr>
<td>Eczema</td>
<td>2 (0.6)</td>
<td>0</td>
</tr>
<tr>
<td>Erythema</td>
<td>0</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Purpura</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Rash</td>
<td>1 (0.3)</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>4 (1.2)</td>
<td>0</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>2 (0.6)</td>
<td>0</td>
</tr>
<tr>
<td>Back pain</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>General disorders</td>
<td>4 (1.2)</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Chest discomfort</td>
<td>0</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Chills</td>
<td>0</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Feeling abnormal</td>
<td>1 (0.3)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Malaise</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Thirst</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
</tbody>
</table>

(Continued)
Table 5. (Continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>LVFX iv.</th>
<th>LVFX p.o.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration site conditions</td>
<td>69 (20.2)</td>
<td>0</td>
</tr>
<tr>
<td>Injection site erythema</td>
<td>54 (15.8)</td>
<td>0</td>
</tr>
<tr>
<td>Injection site induration</td>
<td>2 (0.6)</td>
<td>0</td>
</tr>
<tr>
<td>Injection site pain</td>
<td>9 (2.6)</td>
<td>0</td>
</tr>
<tr>
<td>Injection site pruritus</td>
<td>25 (7.3)</td>
<td>0</td>
</tr>
<tr>
<td>Injection site warmth</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Phlebitis</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Injection site swelling</td>
<td>11 (3.2)</td>
<td>0</td>
</tr>
<tr>
<td>Injection site discomfort</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Angiopathy</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Puncture site pain</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Investigations</td>
<td>73 (21.3)</td>
<td>23 (15.1)</td>
</tr>
<tr>
<td>Alanine aminotransferase increased</td>
<td>35 (10.2)</td>
<td>4 (2.6)</td>
</tr>
<tr>
<td>Aspartate aminotransferase increased</td>
<td>29 (8.5)</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Bilirubin conjugated increased</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Blood bilirubin increased</td>
<td>1 (0.3)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Blood creatine phosphokinase increased</td>
<td>1 (0.3)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Blood glucose decreased</td>
<td>0</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Blood lactate dehydrogenase increased</td>
<td>2 (0.6)</td>
<td>0</td>
</tr>
<tr>
<td>Blood potassium decreased</td>
<td>2 (0.6)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Blood potassium increased</td>
<td>15 (4.4)</td>
<td>11 (7.2)</td>
</tr>
<tr>
<td>Eosinophil count increased</td>
<td>17 (5.0)</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Gamma-glutamyltransferase increased</td>
<td>5 (1.5)</td>
<td>0</td>
</tr>
<tr>
<td>Glucose urine present</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Granulocyte count decreased</td>
<td>2 (0.6)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Haematocrit decreased</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Haemoglobin decreased</td>
<td>2 (0.6)</td>
<td>0</td>
</tr>
<tr>
<td>Neutrophil count decreased</td>
<td>1 (0.3)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Red blood cell count decreased</td>
<td>2 (0.6)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>White blood cell count decreased</td>
<td>2 (0.6)</td>
<td>0</td>
</tr>
<tr>
<td>White blood cell count increased</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Urine bilirubin increased</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Platelet count increased</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Protein urine present</td>
<td>2 (0.6)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Urobilin urine present</td>
<td>3 (0.9)</td>
<td>0</td>
</tr>
<tr>
<td>Blood alkaline phosphatase increased</td>
<td>10 (2.9)</td>
<td>1 (0.7)</td>
</tr>
</tbody>
</table>

Number of subjects (%)

a) Re-coded data, S. Kohno et al.², to MedDRA/J Ver.12

例), γ-GTP 増加 5.0% (17/342 例), 血中 ALP 増加 2.9% (10/342 例) が認められた。一方、経口剤群で発現率が高かった (2% 以上) 副作用は、悪心 7.9% (12/152 例), 好酸球数増加 7.2% (11/152 例), 頭痛 5.3% (8/152 例), 噁吐 5.3% (8/152 例), 腹部不快感 2.6% (4/152 例) であった (Table 5)。
肝機能関連検査値異常の副作用は、経口剤群と比較して注射剤群で高頻度に認められ、ALT 増加が 10.2% (35/342 例), AST 増加が 8.5% (29/342 例), γ-GTP 増加が 5.0% (17/342 例) であり、血中 ALP 増加は 29% (10/342 例), LDH 増加は 0.6% (2/342 例) に認められた (Table 5)。これらの副作用の重症度はすべて軽度から中等度であった (Table 5)。経口剤群では、ALT 増加が 26% (4/152 例), AST 増加および γ-GTP 増加が 20% (3/152 例), 血中 ALP 増加が 0.7% (1/152 例) であり、すべて軽度と評価された。なお、経口剤群では、LDH 増加は認められなかった。

III. 考 察

LVFX 注射剤の 500 mg 1 日 1 回投与における安全性を、国内で実施された 2 つの臨床試験を包括する形で検討した。さらに、すでに実施された LVFX 経口剤の臨床試験における安全性成績と比較検討した。

注射剤群でよくみられた副作用（発現率 5% 以上）としては、注射剤群に特有の注射部位紅斑および注射部位うず状感に加え、下痢、ALT 増加、AST 増加、γ-GTP 増加が認められた (Table 5)。今回認められた副作用は、大部分の事象が軽度または中等度であった (Table 3)。重篤な副作用は 342 例中 2 例に発現し、投与中止にいたっ
た副作（重篤な事象を除く）は41%の被験者に認められ、中止または随伴により回復した。これらの注射群で認められた副作は、LVFX注射剤の比較試験でCTRL群に認められた事象とほぼ同様であったが、注射部位反応の発現率はLVFX注射剤群で高かった。同じキノロン系薬のpazufloxacin（PZFX）注射剤を細菌性肺炎に対し1回1,000mg1日1回投与したIII相試験では、注射部位反応が36.4%（51/140例）に認められた。注射部位反応の事象別には（発現率5%以上）、注射部位紅斑25.0%（35/140例）、注射部位疼痛22.9%（32/140例）、注射部位腫脹13.6%（19/140例）、注射部位硬結9.3%（13/140例）、注射部位静脈炎7.9%（11/140例）などが認められている。PZFX注射剤で認められた注射部位反応も、いずれも軽度または中等度であり、無処置あるいは簡単な処置により消去する適性の局所反応であった。また、ciprofloxacin注射剤でも、同様の注射部位の局所反応（副作用）が報告されており7,8）、注射部位反応はキノロン系注射用抗菌薬で高頻度に認められる副作用であると考えられる。本薬剤の注射部位反応の発現頻度は、治験成績からみると類薬に比べ低いことが考えられた。ただし、今後の注意を要するものと考える。

注射剤群において高頻度に認められた注射部位反応の発現機序が問題となる。非臨床研究から、キノロン系薬がヒスタミン遊離作用を有する可能性が示されており、LVFX注射剤による注射部位反応も非免疫学的な局所刺激反応であると考えられている9）。臨床試験においても、同一患者での再現性が認められないことも多く、アレルギー反応とは異なる作用機序と考えられた。今回、臨床試験で認められたLVFX注射剤による注射部位反応は、その大部分が軽度一過性の事象であり、全身反応に波及することはなかった。また、大部分の患者において投与継続が可能であったことから、臨床使用におけるLVFX注射剤の耐性化に大きな影響を及ぼすものではないと考えられた。しかし、その使用にあたっては、注意を怠ってはならないと考えられる。

日本人の呼吸器感染症患者における経口薬物動態パラメータを用いて、LVFXの注射剤と経口剤の薬物体内動態が推定されている10）。注射剤500mg1日1回投与時のCminは11.8μg/mLであり、経口剤のそれは6.7μg/mLと算出されており、注射剤が経口剤に比べて約1.8倍高い値となっていた。一方、注射剤と経口剤の血漿中薬物濃度は、点滴開始後3時間以降ほぼ同様に推移し、AUCは投与経路によらずほぼ一定の値であり、バイオアベイラビリティの推定値は98%と報告されている。キノロン系薬の有効性がAUC/MICと相關があることをふまえれば、注射剤から経口剤に変更する際には、同じ用法・用量（500mg1日1回投与）で有効性が確認されること、また安全性、注入反応を比較することも必要であり、注射剤から経口剤への変更の際には、特に注意が必要と考えられる。

一方、LVFXは腎排泄型の薬剤であり、LVFX経口剤ではCerによる用量調節が推奨されている11）。今回、被験者の術後因子別に副作用発現率を比較したところ、Cerの使用の副作用発現率に差はなかった。
Ccrの低下に伴う副作用発現率の増加傾向は認められなかった（Table 4）。また、一般的に加齢に伴い腎機能等の生理機能低下が懸念されるが、年齢の層別の副作用発現率でもサブグループ間に違いは認められなかった。

キノロン系薬では、濃度依存的な発現が懸念される副作用に、頻発、低血糖、およびQT間隔の延長があるが、今回の試験ではこれらの副作用の報告はなかった。LVFXのQT間隔に対する影響を検討した臨床試験の報告では、LVFXのQT間隔に及ぼす作用はきわめて弱く、血漿中LVFX濃度の増加はQT間隔に明らかな影響を及ぼさなかった。

注射剤（一般）試験においては、ロジスティック回帰モデルを用いて薬物動態パラメータと副作用発現の相関を検討した結果、曝露量の増加に伴う副作用発現率の増加傾向は認められなかった。したがって、LVFXを500mg点滴静注した際には、紅血球変異と比較してCmaxは上昇するものの、必ずしもこれらの副作用の発現が増えるものではないと考えられた。医療経験の観点から、欧米では肺炎の症状改善に伴う注射用抗生物質を経口抗生物質へのスイッチ療法が多くの症例に対して行われている。今後、日本でも、LVFX注射剤から経口剤へと同一成分でのスイッチ療法が考えられる。

副作用発現率は注射剤群で高い傾向であったが、注射剤に特有な事象である注射部位反応を除くと、注射剤群で33.6%であり、経口剤群の39.5%と同程度であった（Table 2）。注射剤群ではAST増加やALT増加などの肝機能関連検査値異常の発現頻度が高く、経口剤群では悪心や嘔吐などの胃腸障害の発現頻度が高かった（Table 5）。経口剤群で胃腸障害の発現頻度が高かったのは、授与経路の違いが考えられた。一方、注射剤群は経口剤群よりも肝機能関連検査値異常が多く認められた要因としては、患者背景（経口剤群では検査者の15.1%が入院患者であったのに対し、注射剤群は検査者全員が入院患者）（Table 1）が考えられる。また、ALT増加が市腎炎患者では11.3%、慢性呼吸器疾変の二次感染症患者では24%であり、他の肝機能関連検査値異常も同様に市腎炎患者で発現率が高い傾向も認められており、疾患に伴う変化と考えられる。しかし、薬剤による可能性は否定しきれず、肝機能関連検査値異常の発現にも注意を要すると考えられた。

以上より、LVFX注射剤の安全性プロファイルは、注射部位の反応を除き、経口剤と大きな差はないものと考えられた。また、注射部位反応も全身反応に波及した報告はなく、治療上大きな問題とはならないと考えられた。ただし、本報告のLVFX注射剤の安全性評価患者数は342例と少数であり、安全性に関しては今後とも継続して評価していくことが重要と考えられる。LVFX注射剤の有効性・安全性を十分に判断したうえで、本薬剤を適正に使用していくことが重要となる。

文 献
1) 戸塚恭一、河野 萌、松本哲朗、砂川浦介、柴 孝也: Levofloxacin 500 mg 1 日 1 回－新用法・用量－。日化薬誌 2009; 57: 411-22
2) 河野 萌、渡辺 彰、益木信樹、二木芳人、門田淳一、藤田次郎、他: 呼吸器感染症に対するLevofloxacin 500 mg 1 日 1 回投与の臨床効果。日化薬誌 2009; 57(2-3): 20-33
4) 日本化学療法学会抗菌薬臨床評価法制定委員会呼吸器系委員会報告: 呼吸器感染症における新規抗微生物薬の臨床評価法（案）。日化薬誌 1997; 45: 762-78
5) 河野 萌、渡辺 彰、益木信樹、二木芳人、門田淳一、藤田次郎、他: 市中耳炎におけるlevofloxacin注射剤のceftiraxone sodiumを対象とした第Ⅲ相比較試験。日化薬誌 2011; 59 (S:1): 32-45
6) 河野 萌、益木信樹、河合 伸、二木芳人、渡辺 彰、Software 治療: 注射薬 paxufloxacin 1 回1000mg 1 日1回投与時の細菌性肺炎を対象として行われた臨床第Ⅲ相試験。日化薬誌 2010; 58: 664-80
10) 谷川原栄介、清水貴子、戸塚恭一: Levofloxacin注射剤の母集団薬物動態/薬力学解析。日化薬誌 2011; 59 (S:1): 55-64
11) 花岡一成、川原和也、長嶋 悟、植田誠治: 臨床試験におけるlevofloxacin 500 mg投与時の体内動態。日化薬誌 2009; 57 (2-3): 12-9
12) 杉山 靖、福田啓子、毛利光志、藤田朋恵、熊谷雄治: Levofloxacin注射剤500mg単回投与の健康被験者におけるQT間隔に対する影響。日化薬誌 2009; 57: 106-14
13) 河野 萌、渡辺 彰、益木信樹、二木芳人、門田淳一、藤田次郎、他: 呼吸器感染症に対するlevofloxacin注射剤の臨床試験（第Ⅱ/Ⅲ相試験）。日化薬誌 2011; 59 (S:1): 18-31
Safety profile of intravenous levofloxacin (500 mg once a day)

Seiji Hori1 and Shigeru Kohno2

1 Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, Japan (Present: Department of Infectious Diseases and Infection Control, Jikei University School of Medicine)
2 Nagasaki University Hospital

We evaluated the intravenous levofloxacin safety profile (N = 342), integrating two clinical studies in which intravenous levofloxacin at 500 mg once a day was administered to Japanese subjects with pneumonia and secondary infection of chronic respiratory disease. Furthermore, we compared the safety profile of intravenous levofloxacin to that of oral levofloxacin, reported elsewhere. Adverse events were observed in 72.8% and adverse drug reactions in 48.0%. Major adverse drug reactions (over 5%) were injection site erythema (15.2%), alanine aminotransferase increased (10.2%), aspartate aminotransferase increased (8.5%), injection site pruritus (6.7%), diarrhea (5.0%), and gamma-glutamyltransferase increased (5.0%). The incidence of adverse events and adverse drug reactions was slightly higher in intravenous levofloxacin. Systemic allergic reactions such as anaphylaxis were not observed. Excluding injection site reactions such as erythema or pruritus, the adverse event and adverse drug reaction incidence were 63.2% and 33.6%, similar to those reported for oral levofloxacin.

Our results suggest that the intravenous levofloxacin safety profile, excluding injection site reactions, resembled that of oral levofloxacin and that intravenous levofloxacin can be used to treat of infectious diseases without special additional attention to adverse drug reactions.