Radiation exposure does not significantly contribute to the risk of recurrence of Chernobyl thyroid cancer.

Author(s)
Rumyantsev, Pavel O; Saenko, Vladimir A; Ilyin, Alexey A; Stepanenko, Valery F; Rumyantseva, Ulyana V; Abrosimov, Aleksandr Yu; Lushnikov, Evgeny F; Rogounovitch, Tatiana I; Shibata, Yoshisada; Mitsutake, Norisato; Tsyb, Anatoly F; Yamashita, Shunichi

Citation
Journal of Clinical Endocrinology and Metabolism, 96(2), pp.385-393; 2011

Issue Date
2011-02

URL
http://hdl.handle.net/10069/27385

Copyright © 2011 by The Endocrine Society.
Radiation Exposure Does Not Significantly Contribute to the Risk of Recurrence of Chernobyl Thyroid Cancer

Radiation Exposure Does Not Significantly Contribute to the Risk of Recurrence of Chernobyl Thyroid Cancer

Department of Radiosurgery (P.O.R., A.A.I., U.V.R.), Department of Pathology (V.A.S., A.Yu.A., E.F.L.), Laboratory of Medical-ecological Dosimetry and Public Radiation Safety (V.F.S.), and Department of Radiology (A.F.T.), Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk 249036, Russian Federation; and Department of International Health and Radiation Research (V.A.S., S.Y.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan

Context: Papillary thyroid carcinoma (PTC) in patients exposed to environmental radioiodine after the Chernobyl accident is thought to have a relatively aggressive clinical course. Long-term results of treatment are not well known, especially in comparison with sporadic PTC.

Objective: The determination of risk factors for PTC recurrence in a controlled for baseline factors group of patients with radiation-related and sporadic PTC.

Design: Retrospective cohort study involving patients treated for PTC and followed-up in 1991–2008. Risk factors were assessed by stratified analysis using the proportional hazard model.

Setting: Referral center–based.

Patients: A total of 497 patients were enrolled. Patients exposed to radioiodine were 172 individuals with reconstructed individual radiation thyroid doses ranging 51–3170 mGy. Patients with sporadic PTC included 325 individuals matched to exposed patients for sex, age ± 5 yr and time to treatment ± 2 yr.

Main Outcome Measure: Cancer recurrence.

Results: Nodal disease increased the recurrence rate (HR = 5.21; 95% CI = 1.63–16.7) while the presence of tumor capsule (HR = 0.17; 95% CI = 0.06–0.45) and, particularly, treatment according to the Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer significantly reduced it (HR = 0.16; 95% CI = 0.06–0.42). None of the tested variables interacted with radiation factor.

Conclusions: PTC developing after internal exposure to radioiodine does not display specific risk factors for recurrence different from those in sporadic PTC. Common treatment approaches for patients with PTC should be recommended regardless of a history of radiation exposure. (J Clin Endocrinol Metab 96: 385–393, 2011)
Ukraine, and Russia, countries contaminated by radioactive fallouts from the Chernobyl nuclear power station accident. Several investigations revealed causative association of thyroid cancer with internal exposure to radioiodine (4–6).

Clinical studies of Chernobyl thyroid cancers have demonstrated a high prevalence of papillary thyroid carcinoma (PTC) (7–10), an aggressive clinical course especially in cases with short latency (7, 8) and an elevated recurrence rate (11). Most of these studies, however, being ecological in design, have not taken accurate account of thyroid radiation doses and other baseline characteristics as well as of treatment protocols which may influence prognosis. Recurrence pattern has also been poorly addressed so far, perhaps due to the relatively short follow-up period.

Clinical behavior of external radiation-related thyroid cancers and long-term results of treatment do not appear to be different from sporadic thyroid malignancies of similar histotypes (2, 12–14). With regard to internal radiation-related cancers, no similar studies have been done to date. The aim of this work was to analyze risk factors for thyroid cancer recurrence in patients with radiation-related (internal exposure to radioiodine after Chernobyl) and sporadic PTC. Here we report for the first time the results of a center-based cohort study of a large group of patients from Russia.

Materials and Methods

Study cohort and terms

A total of 1753 thyroid cancer patients admitted to and/or followed-up at the Medical Radiological Research Center of Russian Academy of Medical Sciences (MRRC RAMS, Obninsk, Russia) during 1982–2008 were initially considered. PTC was diagnosed in 1513 (86.3%) cases including patients of all ages from both radiation-contaminated areas and other regions of the European part of the country; all these geographic regions are characterized by the low to moderate iodine deficiency (15). Seven hundred four patients were aged less than 18 yr at the time of the Chernobyl accident (April, 1986); diagnosis in these cases was verified by the Pathology Panel of the international Chernobyl Tissue Bank project (16). Of these patients, 352 individuals lived in April 1986 in the regions (oblasts) officially recognized as radiation-contaminated. For all these patients the individual radiation doses for the thyroid were reconstructed (5, 17). The remaining 264 patients were residents of noncontaminated regions; none of them had prior history of radiation. Of the 704 patients meeting age criterion, 37 who were followed-up fewer than 6 months or had persistent disease were excluded from the study.

The study period was from January 1, 1991 to December 31, 2008, leaving 657 patients for further consideration.

The study subjects consisted of two etiological groups. At first we identified all patients in whom reconstructed individual thyroid doses were >50 mGy (51–3170 mGy); this group was designated RI-PTC. Next, among the remaining patients we identified 341 individuals with reconstructed thyroid dose <5 mGy and then selected approximately two patients matching each RI-PTC patient by sex, age at diagnosis (±5 yr), and also calendar time of diagnosis (±2 yr) to avoid bias due to diagnostic and treatment advancements with time and to account for sampling incidence; this group was designated SP-PTC. Thus defined, as outlined in Fig. 1, a cohort of 172 RI-PTC patients and 325 SP-PTC patients was composed.

The study and the protocols were approved by the Institutional Review Board and the Ethics Committee of each participating institution.

Clinical characteristics, treatment, and follow-up

Tumor staging was according to UICC TNM classification of malignant tumors, 6th edition (18). Pathological diagnosis was based on the WHO standards (19).
The extent of surgery, depending on tumor spread, was total thyroidectomy, near-total or hemithyroidectomy with or without neck dissections. Prophylactic central neck dissections (level VI) were done frequently while therapeutic lateral neck dissection was performed for biopsy-proven clinically involved lymph nodes in levels II–V (Table 1). The relationship between tumor aggressiveness and surgical treatment is shown in Supplemental Table 1 (published on The Endocrine Society’s Journals Online web site at http://jcem.endojournals.org).

Postoperative radioiodine (RAI) thyroid remnant ablation was performed by administration of 50–70 mCi of 131I not later than 6 months after surgery. Some low-risk patients were not subjected to this procedure, in line with national guidelines. Whole-body RAI scanning was done on d 5 in all patients after RAI ablation to detect extrathyroidal disease. If 131I uptake was registered outside the thyroid bed, patients received RAI therapy (100–200 mCi) or surgery, depending on clinical indications. All patients received TSH suppression therapy. Serum TSH levels (hTSH RIA) as well as serum Tg (hTG IRMA) and TgAb (AB-hTG IRMA, all kits from Cis Bio international, Gif-sur-Yvette, France) were measured every 6 or 12 months in high- or low-risk patients, respectively, during follow-up clinical examination which also included ultrasound neck area examination, consultations with an endocrinologist and oncologist, as well as RAI scanning, x-ray, or other imaging if necessary.

For every participant of the study we determined the appropriateness of treatment approach by comparing it to the recommendations in the Revised American Thyroid Association (ATA) Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer (hereafter referred to as the Guidelines), which were regarded as the gold standard (20). Compliance with recommendations rated A, B, E, and F was considered mandatory; recommendations C and D were weighed in each individual case, recommendation I was omitted. Note that accordance with the Guidelines was not observed in all patients because some of them were initially treated at nonspecialized hospitals.

Recurrence as the end point

Disease recurrence was defined as surgically removed and pathologically verified local tumor focus or regional metastasis, or distant metastasis detected by ultrasound or RAI imaging not earlier than 6 months after initial treatment. In thyroidectomized patients, stimulated serum Tg test was done before imaging. Patients with negative neck ultrasound, serum Tg <2 μg/liter after thyroid hormone withdrawal with TSH level >30 mIU/liter, negative TgAb and no other evidence of disease were considered disease-free. Serum Tg >2 μg/liter was considered as an indication for further diagnostic means. For radioiodine-based diagnostic procedures, uptake in or outside of the thyroid bed or in a previously unaffected area was interpreted as recurrence. The time to recurrence (only the earliest was taken into account) was calculated based on the date of reoperation or on the date of recurrence detection by imaging.

Statistical analysis

Baseline factors, cancer-related characteristics, and treatment modalities in RI-PTC and SP-PTC groups were compared using Fisher’s exact test or its extension for categorical data and Wilcoxon rank-sum test for continuous measurements.

Factors affecting disease-free survival (DFS) were assessed by stratified analysis using Cox proportional hazard model, where the 172 strata were defined by (RI-PTC)-(SP-PTC)-(SP-PTC) triads or (RI-PTC)-(SP-PTC) pairs. The following variables were tested: age at diagnosis (years, a continuous variable), sex, exposure to radioiodine (Yes/No), tumor size ($\leq 10 \text{ mm}$ vs. $>10 \text{ mm}$), lymph node metastasis, distant metastasis, vascular invasion, tumor multifocality, extrathyroidal extension, presence of tumor capsule (any extent), histopathological variant (classical, follicular, other), and treatment according to the Guidelines (categorical variables). The Guidelines contain differential recommendations for the initial and post initial management of PTC, including the extent of thyroid surgery, neck dissections, and RAI ablation, depending on indications. We did not test each parameter separately but determined the general treatment compliance with the Guidelines for all patients. Thus, the impact of each modality is integrated in the model to reflect treatment adequacy. In addition, interactions of all the variables with the environmental exposure to radioiodine were examined.

Model optimization was performed using Akaike information criteria (21), starting from the full model including all the variables listed above. Once the most appropriate model was determined, the maximum likelihood estimates of the respective parameters and their Wald-type 95% confidence intervals were calculated. DFS rates were compared between RI-PTC and SP-PTC using log-rank test for selected combinations of the risk factors.

The UNIVARIATE procedure (SAS Procedures Guide Version 8. SAS Institute, Cary, NC), and NPAR1WAY, FREQ, LIFETEST, and PHREG (with STRATA statement) procedures in the SAS system (SAS/STAT User’s Guide Version 8. SAS Institute, Cary, NC) were used for calculations, and GraphPad Prism 4 (GraphPad Software Inc., La Jolla, CA) was used to plot the Kaplan-Meier estimates of survival functions. The PROC UNIVARIATE was used to calculate the mean, so, minimum and maximum for continuous measurements; PROC NPAR1WAY was used to perform Wilcoxon rank-sum test for comparing the distributions of the continuous measurements between RI-PTC and SP-PTC groups; PROC FREQ was used to perform Fisher’s exact test and its extension for categorical data; PROC LIFETEST was used to perform log-rank test; and the PHREG was used to perform the stratified analysis using Cox proportional hazard model. The P value less than 0.05 was regarded as indicating statistical significance.

Results

Descriptive characteristics of the study groups

Table 1 shows the comparison between RI-PTC and SP-PTC groups with respect to baseline factors, cancer characteristics, and treatment modalities.

Although the baseline characteristics of RI-PTC and SP-PTC groups, such as age at diagnosis and time to treatment differed significantly (19.6 vs. 25.1 yr old and 109.1 vs. 123.7 months, respectively, $P < 0.001$), we note that these differences were within the prespecified matching limits.

Among cancer-related characteristics, T1 tumors were observed more frequently in RI-PTCs while T2, T3, and T4 in SP-PTCs ($P = 0.015$ for distribution). Tumor size in RI-PTC group was smaller than that in SP-PTCs (12.5 mm vs. 14.8 mm, $P = 0.019$), and also extrathyroidal tumor
TABLE 1. Baseline, cancer, and treatment characteristics

<table>
<thead>
<tr>
<th></th>
<th>RI-PTC, n = 172</th>
<th>SP-PTC, n = 325</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at diagnosis, mean ± SD (range), yr</td>
<td>19.6 ± 6.9 (6–36)</td>
<td>25.1 ± 6.8 (8–37)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>0.745</td>
</tr>
<tr>
<td>Male</td>
<td>44 (25.6%)</td>
<td>79 (24.3%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>128 (74.4%)</td>
<td>246 (75.7%)</td>
<td></td>
</tr>
<tr>
<td>Sex ratio</td>
<td>0.34</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Thyroid radiation dose (range), mGy</td>
<td>[77.0, 123.5, 221.5]³</td>
<td>[0, 1] (0–5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Period of latency, mean ± SD (range), yr</td>
<td>15.1 ± 4.1 (5–21)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Age at Chernobyl accident, mean ± SD (range), yr</td>
<td>5.8 ± 4.7 (0–17)</td>
<td>10.1 ± 5.1 (0–17)</td>
<td><0.001</td>
</tr>
<tr>
<td>Follow-up period mean ± SD (range), months</td>
<td>93.1 ± 44.6 (26–201)</td>
<td>74.9 ± 45.4 (24–208)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time to treatment, mean ± SD (range), months</td>
<td>109.1 ± 45.1 (11–179)</td>
<td>123.7 ± 49.3 (4–189)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cancer characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT category</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>145 (84.3%)</td>
<td>231 (71.1%)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>14 (8.1%)</td>
<td>49 (15.1%)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>12 (7.0%)</td>
<td>41 (12.6%)</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>1 (0.6%)</td>
<td>3 (0.9%)</td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>1 (0.6%)</td>
<td>1 (0.3%)</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>94 (54.7%)</td>
<td>156 (48.0%)</td>
<td>0.187</td>
</tr>
<tr>
<td>N1a</td>
<td>55 (58.5%)</td>
<td>74 (47.4%)</td>
<td>0.117</td>
</tr>
<tr>
<td>N1b</td>
<td>39 (41.5%)</td>
<td>82 (52.6%)</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>6 (3.5%)</td>
<td>18 (5.5%)</td>
<td>0.383</td>
</tr>
<tr>
<td>Tumor size, mean ± SD (range), mm</td>
<td>12.5 ± 8.7 (0–60)</td>
<td>14.8 ± 10.3 (0–60)</td>
<td>0.019</td>
</tr>
<tr>
<td>≤10 mm</td>
<td>86 (50.0%)</td>
<td>137 (42.2%)</td>
<td>0.024</td>
</tr>
<tr>
<td>>10 and ≤20 mm</td>
<td>67 (39.0%)</td>
<td>122 (37.5%)</td>
<td></td>
</tr>
<tr>
<td>>20 mm</td>
<td>19 (11.0%)</td>
<td>66 (20.3%)</td>
<td></td>
</tr>
<tr>
<td>Extrathyroidal extension</td>
<td>11 (6.4%)</td>
<td>40 (12.3%)</td>
<td>0.043</td>
</tr>
<tr>
<td>Vascular invasion</td>
<td>7 (4.1%)</td>
<td>6 (1.9%)</td>
<td>0.150</td>
</tr>
<tr>
<td>Tumor multifocality</td>
<td>48 (27.9%)</td>
<td>115 (35.4%)</td>
<td>0.108</td>
</tr>
<tr>
<td>Tumor capsule³</td>
<td>67 (39.0%)</td>
<td>140 (43.1%)</td>
<td>0.391</td>
</tr>
<tr>
<td>Full</td>
<td>30 (44.8%)</td>
<td>58 (41.4%)</td>
<td>0.794</td>
</tr>
<tr>
<td>Prominent (≥50% perimeter)</td>
<td>22 (32.8%)</td>
<td>53 (37.9%)</td>
<td>0.794</td>
</tr>
<tr>
<td>Partial (<50% perimeter)</td>
<td>15 (22.4%)</td>
<td>29 (20.7%)</td>
<td></td>
</tr>
<tr>
<td>Histopathology variant</td>
<td></td>
<td></td>
<td>0.041</td>
</tr>
<tr>
<td>Classic papillary</td>
<td>105 (61.0%)</td>
<td>235 (72.3%)</td>
<td></td>
</tr>
<tr>
<td>Follicular</td>
<td>52 (30.2%)</td>
<td>69 (21.2%)</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td>7 (4.1%)</td>
<td>7 (2.2%)</td>
<td></td>
</tr>
<tr>
<td>Hurthle cell</td>
<td>1 (0.6%)</td>
<td>5 (1.5%)</td>
<td></td>
</tr>
<tr>
<td>Diffuse sclerosing</td>
<td>7 (4.1%)</td>
<td>7 (2.2%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>2 (0.6%)</td>
<td></td>
</tr>
<tr>
<td>Treatment modalities</td>
<td></td>
<td></td>
<td>0.027</td>
</tr>
<tr>
<td>Extent of thyroid resection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total thyroidectomy</td>
<td>88 (51.2%)</td>
<td>171 (52.6%)</td>
<td></td>
</tr>
<tr>
<td>Near-total thyroidectomy</td>
<td>3 (1.7%)</td>
<td>22 (6.8%)</td>
<td></td>
</tr>
<tr>
<td>Hemithyroidectomy</td>
<td>81 (47.1%)</td>
<td>132 (40.6%)</td>
<td></td>
</tr>
<tr>
<td>Lymph node dissection</td>
<td>144 (83.7%)</td>
<td>245 (75.4%)</td>
<td>0.039</td>
</tr>
<tr>
<td>Central neck dissection (level VI)</td>
<td>104 (72.2%)</td>
<td>158 (64.5%)</td>
<td>0.119</td>
</tr>
<tr>
<td>Central + lateral neck dissection (levels VI, II–V)</td>
<td>40 (27.8%)</td>
<td>87 (35.5%)</td>
<td></td>
</tr>
<tr>
<td>Radioiodine ablation</td>
<td>69 (40.1%)</td>
<td>119 (36.3%)</td>
<td>0.437</td>
</tr>
<tr>
<td>TSH suppression therapy</td>
<td>172 (100%)</td>
<td>340 (100%)</td>
<td>1.000</td>
</tr>
<tr>
<td>Accordance with the Guidelines</td>
<td>127 (73.8%)</td>
<td>202 (62.2%)</td>
<td>0.010</td>
</tr>
</tbody>
</table>

SD, standard deviation.

³ 25%, 50%, and 75% quartiles.

⁴ Calculated as an interval between April 26, 1986 and the date of the first surgery.

⁵ Not applicable.

⁶ Calculated as an interval between the beginning of the study and the date of the first surgery.

⁷ Any extent of tumor capsule on pathology, from full to patchy, was interpreted as the capsule presence; otherwise, the tumors were considered nonencapsulated.
spread was observed in the former group less frequently (6.4% vs. 12.3%, \(P = 0.043 \)). These differences were likely due to ultrasound screening programs implemented in the regions contaminated with radionuclides that allowed the detection of early-stage malignancies more often. The overall prevalence of nodal disease and the frequencies of vascular invasion and multifocal tumors did not differ between the groups.

Histological data demonstrated the presence of tumor capsule in about 40% cases in both groups. The classical papillary variant of tumor morphology was predominant and more frequent among SP-PTCs (72.3% vs. 61.0%), while the follicular variant was more prevalent in the RI-PTC group (30.2% vs. 21.2%). Frequencies of tumors with less common histological variants of PTC occurred with comparable frequencies in both groups. Overall, the distributions of histological variants in RI- and SP-PTC groups differed significantly (\(P = 0.041 \)).

Total thyroidectomy was done in approximately 50% of all patients. Near-total thyroidectomy was rather infrequent (1.7–6.8%), hemithyroidectomy was performed in 47.1% and 40.6% of RI-PTC and SP-PTC patients, respectively (\(P = 0.027 \) for distribution). The relatively high frequency of organ-preserving surgeries was due to national guidelines recommending such for small solitary cancers confined to the thyroid without evidence of regional and/or distant metastases. Lymph node dissections were done in most cases (78.3% totally), but they were more frequent in RI-PTC group than in SP-PTCs (83.7% vs. 75.4%, \(P = 0.039 \)), perhaps because surgeons were partly influenced by earlier reports on high aggressiveness of Chernobyl thyroid cancers. RAI ablations were performed in about one-third of cases (37.6% totally) with comparable proportions of patients receiving this treatment in both groups. Suppression hormone therapy was prescribed to all patients in this study; attained serum TSH levels were \(\leq 0.1 \) mU/liter in all disease-free patients throughout the follow-up period. Overall compliance of treatment with the Guidelines in the cohort was 66.2%.

However, in RI-PTC group it was significantly more frequent than in the SP-PTC (73.8% vs. 62.2%, \(P = 0.010 \)).

Disease recurrence

As shown in Table 2, during the study period recurrences were registered in 89 (17.9%) patients, of them in 25 patients of the RI-PTC and in 64 patients of the SP-PTC groups (14.5% vs. 19.7%, \(P = 0.177 \)). Eighty-six cases of recurrence were confirmed by histological examination of surgically removed tumor tissues; one of these cases was accompanied by distant metastases in the lung. In the remaining three cases distant metastases were revealed on diagnostic whole-body scintigraphy during follow-up.

The most common recurrence sites were regional lymph nodes (totally 81.2%). Local recurrence (in the thyroid bed) was observed in 14.9%. Distant metastases (in the lung) were diagnosed in 4.0%. No lethal outcomes were registered.

Disease-free survival analysis

As specified in Table 3 showing the estimates of risk factors remained in the optimal model, environmental exposure to radioiodine and tumor size had insignificant effects on disease-free survival while the presence of tumor capsule (HR \(= 0.17 \); 95% CI \(= 0.05 \) to 0.45), nodal disease (HR \(= 5.21 \); 95% CI \(= 1.63 \) to 16.7), and treatment according to the Guidelines (HR \(= 0.16 \); 95% CI \(= 0.06 \) to 0.42) had a marked influence. The strongest factor appeared to be namely the latter one: adequate treatment significantly decreased chance of recurrence. Somewhat unexpectedly, the presence of tumor capsule also strongly improved prognosis. Lymph node involvement is a known condition increasing chance of recurrence, it held true in our series. All other potential risk factors tested had insignificant effect. Importantly, no evidence of interaction of any variable with radiation exposure was found attesting to the absence of risk factors specific to radiation-related or sporadic PTC.
DFS was compared between RI-PTC and SP-PTC for all combinations of the three dichotomous variables found to be significantly associated with it. As demonstrated in Fig. 2, risk for disease recurrence was not higher in patients with radiation-related PTC compared with those with sporadic PTC in any scenario considered.

Discussion

This study analyzed clinicopathological characteristics and risk factors for recurrence in a group of young patients with PTC of different etiology. The advantages of our work include the center-based implementation according to a uniform protocol, the availability of individual thyroid radiation dose estimates, the inclusion of pathologically verified PTC cases, an opportunity to accrue a relatively large group of young patients with sporadic PTC, and the control for baseline factors.

A source of potential bias could be the systematic ultrasound screening of the residents of contaminated regions. The influence of this factor perhaps explains the lower pT category ($P = 0.015$) as well as the smaller tumor

TABLE 3. Proportional hazard ratio analysis of risk factors for disease recurrence in the cohort

<table>
<thead>
<tr>
<th>Variable</th>
<th>Comparison</th>
<th>Hazard ratio</th>
<th>Wald’s 95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal radiation exposure</td>
<td>Yes/No</td>
<td>0.54</td>
<td>0.26–1.13</td>
<td>0.104</td>
</tr>
<tr>
<td>Tumor size >10 mm</td>
<td>Yes/No</td>
<td>1.47</td>
<td>0.51–4.20</td>
<td>0.472</td>
</tr>
<tr>
<td>Presence of tumor capsule</td>
<td>Yes/No</td>
<td>0.17</td>
<td>0.06–0.45</td>
<td>0.0003</td>
</tr>
<tr>
<td>Regional metastases (N1)</td>
<td>Yes/No</td>
<td>5.21</td>
<td>1.63–16.7</td>
<td>0.0053</td>
</tr>
<tr>
<td>Treatment in accordance with</td>
<td>Yes/No</td>
<td>0.16</td>
<td>0.06–0.42</td>
<td>0.0002</td>
</tr>
<tr>
<td>the Guidelines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 2. Disease-free survival analyses of the effects of tumor capsule, nodal disease, and treatment adequacy in the RI-PTC and SP-PTC groups. The (+) or (−) signs in the graph titles indicate the presence or absence of tumor capsule or reflect the compliance of treatment with the Guidelines; N0 or N1 indicate nodal disease status. The vertical tick-marks correspond to censored data. Graph A is a survival plot for the RI-PTC and SP-PTC patients with 0 risk factors; B–D, one risk factor; E–G, possible combinations of two different risk factors; H, subgroups with three risk factors. Note that apparent differences in graphs F and G are due to the small number of RI-PTC patients. The P values were calculated using log-rank test.
size (12.5 vs. 14.8 mm, $P = 0.019$) and the lower prevalence of extrathyroidal invasion (6.4% vs. 12.3%, $P = 0.043$) in patients of RI-PTC group compared with SP-PTCs. Because all patients with radiation thyroid doses exceeding 0 mGy (i.e., all 172 RI-PTC patients and 130 patients of SP-PTC group with doses <5 mGy) were subjected to ultrasound screening, it was impossible to distinguish whether it was radiation exposure or ultrasound screening which associated with the less advanced tumor spread. However, if patients of SP-PTC group were considered regardless of radiation dose, similar trends were detected on a supplementary analysis (data not shown). We therefore are inclined to attribute the above-mentioned differences namely to ultrasound screening.

Despite the general absence of difference in the frequency of nodal disease between RI-PTCs and SP-PTCs (54.7% vs. 48.0%, $P = 0.187$), the central neck lymph nodes tended to be more frequently involved in the former group (N1a stage, 58.5% vs. 47.4%, $P = 0.117$). Because it could not be ruled out that this was a radiation-related trait, a complementary multivariate regression analysis was done which showed that nodal disease interacted with treatment but not with radiation exposure (data not shown). Indeed, lymph node dissections were done more frequently in RI-PTC than in SP-PTC cases (83.7% and 75.4%, respectively, $P = 0.039$) and thus clinically insignificant at the time of surgery regional micromeatstases were removed and revealed on pathology. We believe prophylactic central-compartment neck dissection was one of the major circumstances that decreased the chance of recurrence which in most instances (81.2% sites cumulatively) manifested as regional metastasis.

Analysis of risk factors for PTC recurrence demonstrated that among all variables tested only three (i.e., nodal disease, the presence of tumor capsule, and adequate treatment) were significant.

Nodal disease has been shown to be an adverse prognostic factor for PTC recurrence including Chernobyl childhood cancers (10, 22, 23). Therefore it was rather expected that patients with regional metastases may be at higher risk (HR = 5.21). Similarly, adequacy of treatment, especially the extent of surgery, is a well-known factor to affect DFS (10, 11, 23–27). It appeared to have the strongest effect on decreasing chance of recurrence (HR = 0.16) according to our investigation. Spinelli and colleagues reported a significantly higher recurrence rate in childhood thyroid cancer patients from Chernobyl regions compared with Italian patients (64% vs. 3%, $P < 0.0001$) (11). However, it was pointed out that this diversity was probably due to the differences in treatment approaches: total thyroidectomy was done in 8% and 92% cases in the corresponding groups. In our opinion, the Guidelines expand well-balanced strategies of treatment justification. Treatment according to the Guidelines in our series was more frequently given to RI-PTC patients (73.8% vs. 62.2% in SP-PTC, $P = 0.010$), and it is likely that the better DFS observed in the former group was in part the direct result of it.

Among other predictors of PTC recurrence, the best known are the older age of patients, the greater tumor size, and extrathyroidal tumor invasion (23, 28, 29). The oldest patient in our study was 37 yr old, and within this narrow range the effect of age on DFS was not detected. On the other hand, previous works demonstrated that the younger age may also be a risk factor for PTC recurrence in young patients (10, 22). The reasons for age effect was not revealed in our analyses may be a different statistical model (proportional hazard in this study vs. logistic regression) and prophylactic neck dissections in the majority of cases in our series.

Tumor size is an important factor influencing PTC prognosis (23, 27, 30). In our study tumor size did not associate with the risk for recurrence ($P = 0.472$). Perhaps this was due to the relatively young age of enrolled patients, ultrasound screening which allowed detection of small tumors, and frequent central neck dissections performed regardless of tumor size.

An interesting finding was the strong effect of tumor capsule (HR = 0.17). Its beneficial influence on thyroid cancer prognosis was (31–33) or was not (13) reported in previous works. Our experience suggests that tumor capsule frequently occurs in PTC (considering both fully and partly encapsulated tumors). Tumor capsule presence can tentatively be evaluated preoperatively on high-resolution ultrasound, during surgery by cross-sectioning the removed neoplasm, and definitely verified on intraoperative pathology. Our data demonstrate that tumor capsule could be a marker of better DFS and therefore may be considered as a favorable prognostic factor. Longer follow-up is required to validate its power to affect management recommendations.

It is necessary to emphasize that none of potential risk factors tested was specific to the radiation-related or sporadic PTC group. Previous analyses of risk factors for recurrence show no principal difference between those in sporadic and external radiation-related thyroid cancer (2, 12–14). Our study largely arrives at similar findings. We found no evidence of etiology-associated risk factors for recurrence in the cohort that included both sporadic and internal radiation-related PTCs. We conclude that similar treatment approaches should be recommended for both
nonexposed patients and for those exposed to internal radiation.

Acknowledgments

We express our deep appreciation of diagnosis verification by the members of the International Pathology Panel of the Chernobyl Tissue Bank: Drs. T. Bogdanova, N. Dvinskikh, M. Ito, V. LiVolsi, J. Rosai, and E.D. Williams, and to Dr. G. Thomas.

Address all correspondence and requests for reprints to: Vladimir Saenko, Department of International Health and Radiation Research, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. E-mail: saenko@net.nagasaki-u.ac.jp.

This work was supported by Nagasaki University Global COE program and Grant-in-Aid for Scientific Research for Radiation Research, Nagasaki University Graduate School of Bio-medical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. E-mail: saenko@net.nagasaki-u.ac.jp.

Disclosure Summary: The authors have nothing to declare.

References

