<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
</tbody>
</table>

（この文は人工知能が生成したものです。）
THE STICKELBERGER IDEAL OF THE FIELD
OF 2^n-TH ROOTS OF UNITY

BY MIDORI KOBAYASHI

§ 1. Introduction

Let Q be the rational number field and Z the rational integer ring. For any rational integer $m > 2$, let ζ_m be a primitive m-th root of unity and $K = Q(\zeta_m)$ the cyclotomic field generated by ζ_m over Q. We denote by G the Galois group of K over Q, by R the group ring of G over Z, and by S the Stickelberger ideal of K. Let h be the class number of k and h^+ the class number of the maximal real subfield K^+ of K. We put $h^- = h/h^+$, then h^- is the so-called first factor of h. Iwasawa ([1]) proved the class number formula: $h^- = (R^- : S^-)$ when m is an odd prime power, and Sinnott ([5]) extended this formula for any cyclotomic field. Let S_k be the Stickelberger ideal of K, generalizing S for $k = 1$ to arbitrary odd integer $k > 0$. Lang determined the index of S_k of odd prime power level and Kitahara ([2]) worked out the index of S_k in the composite level.

On the other hand, Skula ([6]) has presented a special basis of S^- when m is an odd prime power, and he gives an another proof of Iwasawa's formula by the calculation of the determinant of the transition matrix from a certain basis of R^- to this basis of S^-. In this paper, we extend Skula's method to the case when m is a power of 2.

§ 2. Notation and terminology

Let p be a prime number and n a natural number. For $p = 2$ let $n > 1$. Put $q = p^n$. We let ζ_q be a primitive q-th root of unity, $K = Q(\zeta_q)$ the cyclotomic field generated by ζ_q over Q, and G the
Galois group of \(K \) over \(Q \). Let \(\sigma_t \) denote the element of \(G \) such that \(\sigma_t (\zeta_q) = \zeta_q^t \) for any integer \(t \) prime to \(q \), and the mapping \(t \mapsto \sigma_t \), for \(t \) prime to \(m \), induces an isomorphism \((\mathbb{Z}/q\mathbb{Z})^* \cong G \) of the multiplicative group \((\mathbb{Z}/q\mathbb{Z})^* \) of rational integers mod \(q \) with \(G \). We then identify the group \((\mathbb{Z}/q\mathbb{Z})^* \) and \(G \) through this isomorphism. Let \(\chi \) be a character of \(G \), i.e. a homomorphism of \(G \) into \(\mathbb{C}^* \). \(\chi \) is said to be an odd character if \(\chi (\sigma_{-1}) = -1 \). We denote by \(G^* \) the character group of \(G \).

\(R = \mathbb{Z}[G] \) and \(Q[G] \) denote the group ring of \(G \) over \(\mathbb{Z} \) and \(Q \), respectively. We define the element \(\theta \) in \(Q[G] \):

\[
\theta = \frac{1}{q} \sum_{t=1 \atop (t,q) = 1}^q t \sigma_t^{-1}
\]

and put \(I = \theta R \cap R \), then \(I \) is an ideal of \(R \). \(I \) is the Stickelbelger ideal in this case. For any ideal \(A \) of \(R \), we define

\[
A^- = \{ a \in A; \sigma_{-1}a = -a \}.
\]

Furthermore we shall use the followings symbols. For any real number \(r \), let \(<r> \) denote the unique real number \(r' \), \(0 \leq r' < 1 \), such that \(r - r' \) is an integer. For any \(a \in \mathbb{Z} \), we denote by \([a] \) the unique integer \(a' \), \(0 \leq a' < q \), such that \(a' \equiv a \pmod{q} \). Then \([a] \) is the smallest integer \(\geq 0 \) in the residue class of \(a \) mod \(q \).

\[\]$ 3. $ The expressing of \(h^- \) as a determinant

Put \(q = 2^n \ (n > 2) \) and \(K = Q(\zeta_q) \). We identify \(G = G(K/Q) \) with \((\mathbb{Z}/q\mathbb{Z})^* \) as described in \(§ 2 \). We have

\[
G = (\mathbb{Z}/q\mathbb{Z})^* = A \times B \text{ (direct product)},
\]

where \(A \) is the cyclic subgroup generated by \(-1\) with order 2 and \(B \) the cyclic subgroup generated by \(5 \) with order \(2^{n-2} \).

As is well-known, the first factor \(h^- \) is given by the formula:

\[
h^- = q \left(\frac{1}{2} \right) 2^{n-2} \prod_{x \text{odd}} \sum_{a=1 \atop (a,q)=1}^q \chi(a) <\frac{a}{q}>.
\]
where χ ranges over all odd characters of G and a over all integers with $1 \leq a < q$, $(a, q) = 1$.

Now we let ω be the odd character of G satisfying $\omega(B) = 1$. Then $\chi = \omega \psi$ ranges over all odd characters of G when ψ ranges over all even characters of G, hence we have

$$h^- = q \left(\frac{1}{2} \right)^{2^{n-2}} \prod_{\psi \text{ even } a=1}^{q} \sum_{(a, q) = 1} \omega \psi(a) \left< \frac{-a}{q} \right>$$

$$= q \left(\frac{1}{2} \right)^{2^{n-2}} \prod_{\psi \text{ even } a \in B} \sum \left(\omega \psi(a) \left< \frac{-a}{q} \right> + \omega \psi(-a) \left< \frac{-a}{q} \right> \right)$$

$$= q \left(\frac{1}{2} \right)^{2^{n-2}} \prod_{\psi \in B^*} \sum_{a \in B} \omega(a) \psi(a) \left< \frac{-a}{q} \right> - \left< \frac{-a}{q} \right>$$

where B^* is the character group of B. From the Dedekind determinant relation (cf. Lang [4] p 89), we get

$$h^- = q \left(\frac{1}{2} \right)^{2^{n-2}} \left| \det \{\omega(ab) \left< \frac{-ab}{q} \right> - \left< \frac{-ab}{q} \right>\} \right|_{a, b \in B}.$$

The size of the determinant is 2^{n-2}. Since we have $\omega(ab) = 1$

and $\left< \frac{-ab}{q} \right> + \left< \frac{-ab}{q} \right> = 1$ for any $a, b \in B$,

$$h^- = q \left(\frac{1}{2} \right)^{2^{n-2}} \left| \det \left(2 \left< \frac{ab}{q} \right> - 1 \right) \right|_{a, b \in B}$$

$$= q \left(\frac{1}{2} \right)^{2^{n-2}} \left(\frac{1}{q} \right)^{2^{n-2}} \left| \det \left(2 [ab] - q \right) \right|_{a, b \in B}.$$
If we subtract row 1 from every other row, we obtain

\[
D = \begin{vmatrix}
q-2 & q-2[b] \\
2-2[a] & 2[b] - 2[ab] \\
\vdots & \vdots \\
\end{vmatrix}
\begin{vmatrix}
q-2 \\
1-[a] \\
\vdots \\
\end{vmatrix}
\begin{vmatrix}
q-2[b] \\
[b] - [ab] \\
\vdots \\
\end{vmatrix}
= 2^{2^{n-2}} - 1
\]

If we subtract \([b]\)-times column 1 from column \(b\) \((b \neq 1)\), we get

\[
D = 2^{2^{n-2}} - 1
\begin{vmatrix}
q-2 & q-q[b] \\
1-[a] & [a][b] - [ab] \\
\vdots & \vdots \\
\end{vmatrix}
\]

Therefore we have

\[
h^* = \frac{1}{2}
\begin{vmatrix}
q-2 & 1-[b] \\
1-[a] & [a][b] - [ab]q \\
\vdots & \vdots \\
\end{vmatrix}
\begin{vmatrix}
\vdots \\
q \\
\vdots \\
\end{vmatrix}
\begin{vmatrix}
< a \\
a, \ b \in B \\
\end{vmatrix}
\]
§ 4. The basis of I^-

Let $\alpha = \sum_{t=1}^{q} a_t \sigma_t$ be any element of I^-. Since $\alpha \in R$,

then there exist $x_t \in \mathbb{Z}$ such that $a_t = \frac{1}{q} \sum_{k=1}^{q} [kt^{-1}]x_k$, for any

t $\in \mathbb{Z}$ with $(t,q) = 1$, $1 \leq t < q$, where t^{-1} means the integer t' satisfying

t't = 1 \pmod{q}, 1 \leq t' < q$. Since $\alpha \in R$, we have $\sum_{k=1}^{q} kx_k \equiv 0 \pmod{q}$,

and since $\sigma_\cdot \alpha = -\alpha$, it follows $\sum_{k=1}^{q} x_k = 0$. The converse is immediate, thus it holds

$I^- = \{ \alpha = \sum_{t=1}^{q} a_t \sigma_t; \exists x_t \in \mathbb{Z}, a_t = \frac{1}{q} \sum_{k=1}^{q} [kt^{-1}]x_k,$

$\sum_{k=1}^{q} kx_k \equiv 0 \pmod{q}, \sum_{k=1}^{q} x_k = 0 \}.$

For $1 \leq t < q$, $(t,q) = 1$ and $i \in B$, put

$a_{i,t} = [t^{-1}] - \frac{q}{2}$

$a_{i,t} = \frac{1}{q} ([t^{-1}]i - [t^{-1}i]) + \frac{1}{2} \cdot (1 - [i])$, if $i \neq 1$.

Further put for $i \in B$

$\alpha_i = \sum_{t=1}^{q} a_{i,t} \sigma_t$
If we put
\[
x_i = \begin{cases}
\frac{-q}{2} & \text{for } t = 1 \\
-\frac{q}{2} & \text{for } t = q - 1 \\
0 & \text{for } t \neq 1, q - 1
\end{cases}
\]
we get \(\alpha_i \in I^- \). Suppose that \(i \in B, i \neq 1 \) and put
\[
x_i = \begin{cases}
\frac{1 + i}{2} & \text{for } t = 1 \\
-1 & \text{for } t = i \\
\frac{1 - i}{2} & \text{for } t = q - 1 \\
0 & \text{for } t \neq 1, i, q - 1
\end{cases}
\]
then we see that \(\alpha_i \in I^- \).

Let \(\beta = \sum_{t=1}^{q} b_{t} \sigma_{t} \in I^- \). There exist \(x_i \in \mathbb{Z} \) such that
\[
b_t = \frac{1}{q} \sum_{t} [it^{-1}] x_i \sum_{i} ix_i \equiv 0 \pmod{q}, \sum_{i} x_i = 0. \]
For any \(i \in B \), we put \(y_i = x_i - x_{-i} \) and \(c = \sum_{i \in B} (x_i - x_{-i}) \), then it holds \(c \equiv 0 \pmod{q} \). By computation we obtain that
\[
\beta = -\sum_{i \in B} y_i \alpha_i + \frac{c}{q} \alpha_1.
\]
Hence \(\{ \alpha_i, i \in B \} \) is a system of generators of the additive group \(I^- \).

Since we have \(R^- = (1 - \sigma_1) R \), we see \(R^- \) is a free abelian group with \(\mathbb{Z} \)-basis
\[
\{ \sigma_1 - \sigma_{-t}, (t, q) = 1, 1 \leq t < \frac{q}{2}, t \in \mathbb{Z} \}
\]
of rank \(2^{n-1} \). Therefore the index of \(I^- \) in \(R^- \) is given by
THE STICKELBERGER IDEAL OF THE FIELD OF 2^n-TH ROOTS OF UNITY

$$(R^- : I^-) = |\det((a_{it}), \ i, \ t \in B)|.$$

$$E = |\det (a_{it}), \ i, \ t \in B)| = \begin{vmatrix} q \\ 1 - \frac{q}{2} - [t^{-1}] - \frac{q}{2} \\ \vdots \\ 1 - [i]] [i][t^{-1}] - [it^{-1}] + 1 - [i]] \end{vmatrix} < i$$

If we subtract the column 1 from every other column, we have

$$E = \frac{1}{2} \begin{vmatrix} q - 2 - [t^{-1}] \\ 1 - [i]] [i][t^{-1}] - [it^{-1}] + 1 - [i]] \end{vmatrix}$$

Hence we have $h^- = (R^- : I^-)$, and from $h^- \cong 0$, it follows that $(\alpha_i, \ i \in B)$ is a basis of I^- over Z.

Therefore we obtain the following theorem.
THEOREM. Let $q=2^n$ and $K=\mathbb{Q}(\zeta_q)$. The system $\{\alpha_i, \ i \in B\}$ is a basis of the additive group I^- and for the determinant Δ of the transition matrix from the basis $\{\sigma_1-\sigma_i, (t, q) = 1, \ 1 \leq t < \frac{q}{2}, \ t \in \mathbb{Z}\}$ of R^- to the basis $\{\alpha_i, \ i \in B\}$ of I^- there holds $h^- = |\Delta|$. Therefore $h^- = (R^-:I^-)$.

REFERENCES