Let \(n \) be any triangular number: \(n = 1 + 2 + \cdots + k \), where \(k \) is a natural number.

Form a pile of \(n \) cards, then divide it into arbitrary piles with an arbitrary number of cards in each pile. Take one card from each pile and with them make a new pile. Keep repeating the procedure. It is conjectured that regardless of the initial state you will reach the consecutive state, i.e., \((1, 2, 3, \ldots, k)\) in finite steps: the game must end because the consecutive state cannot change. This game is called Bulgarian Solitaire.

For example, in case \(k = 3 \), \(n = 6 \),

\[
(1, 1, 4) \rightarrow (3, 3) \rightarrow (2, 2, 2) \rightarrow (1, 1, 1, 3) \rightarrow (2, 4) \rightarrow (1, 2, 3),
\]

\[
(6) \rightarrow (1, 5) \rightarrow (2, 4) \rightarrow (1, 2, 3),
\]

and in case \(k = 4 \), \(n = 10 \),

\[
(1, 1, 3, 5) \rightarrow (2, 4, 4) \rightarrow (1, 3, 3, 3) \rightarrow (2, 2, 2, 4) \rightarrow (1, 1, 1, 3, 4) \rightarrow (2, 3, 5) \rightarrow (1, 2, 3, 4).
\]

The above games end with the consecutive state in 5, 3 and 6 steps, respectively.

It is conjectured that for \(n = 1 + 2 + \cdots + k \), any game must end in no more than \(k(k - 1) \) steps, and in 1982 Donald E. Knuth and his students of Stanford University confirmed it for \(k \leq 10 \) by computer.

In this paper we shall show that the above conjecture cannot be

made better in a sense, that is, we shall prove the following:

Let k be any natural number (≥ 3). Put $n=1+2+\cdots+k$. The partition of $n,$ $(1, 1, 2, 3, \cdots, k-2, k-1, k-1)$ reaches the consecutive state by Bulgarian operation in $k(k-1)$ steps.

The partition $(1, 1, 2, 3, \cdots, k-2, k-1, k-1)$ is called the top of the main trunk of Bulgarian tree by Gardner. \(^{(3)}\)

Now we shall prove the above theorem for $k \geq 6$; it is easily checked for $k \leq 5$.

The initial state is $(1, 1, 2, 3, \cdots, k-2, k-1, k-1)$, so we have $(1, 2, 3, \cdots, k-2, k-2, k+1)$ after the 1st step, $(1, 2, \cdots, k-3, k-3, k, k)$ after the 2nd step, $(1, 2, \cdots, k-4, k-4, k-1, k-1, k)$ after the 3rd step, and so on, $(1, 1, 4, 4, 5, \cdots, k)$ after the $(k-2)$th step and $(3, 3, 4, 5, \cdots, k-1, k)$ after the $(k-1)$th step. Hence we have $(2, 2, 3, 4, \cdots, k-2, k-1, k-1)$ after the kth step.

Let $2 \leq l \leq k-3$. We shall show by induction on l that we have $(1, 2, \cdots, l-1, l+1, l+1, l+2, \cdots, k-1, k-1)$ after the lkth step.

If $l=2$, it is easily checked that we have $(1, 1, 3, 5, 5, 6, \cdots, k)$ after the $(2k-2)$th step, so $(1, 3, 3, 4, 5, \cdots, k-2, k-1, k-1)$ after the $2k$th step.

If $l=3$, we have $(2, 2, 3, 4, \cdots, k-3, k-2, k-2, k)$ after the $(2k+1)$th step and $(1, 1, 3, 4, 6, 6, 7, \cdots, k)$ after the $(3k-2)$th step, so we have $(1, 2, 4, 4, 5, \cdots, k-1, k-1)$ after the $3k$th step.

Suppose, then, that $4 \leq l \leq k-3$. By induction we may have $(1, 2, \cdots, l-2, l, l, l+1, \cdots, k-1, k-1)$ after the $(l-1)k$th step. Then we have $(1, 2, \cdots, l-3, l-1, l-1, l, \cdots, k-2, k-2, k)$ after the $((l-1)k+1)$th step.

step, and so on, \((1, 3, 3, 4, \cdots, k-l+2, k-l+2, k-l+4, \cdots, k-1, k)\) after the \(((l-1)k+l-3)\)th step. So we get \((1, 2, \cdots, k-l-2, k-l, \cdots, k-2, k, k)\) after the \(((l-1)k+l+1)\)th step. And we have \((1, 1, 3, 4, \cdots, l+1, l+3, l+3, l+4, \cdots, k)\) after the \(((l-1)k+k-2)\)th step, so \((2, 3, \cdots, l, l+2, l+2, l+3, \cdots, k-1, k)\) after the \(((l-1)k+k-1)\)th step, hence we obtain \((1, 2, \cdots, l-1, l+1, l+1, l+2, \cdots, k-1, k-1)\) after the \(((l-1)k+k) = lk\)th step.

Therefore, putting \(l = k-3\), we have \((1, 2, \cdots, k-4, k-2, k-2, k-1, k-1)\) after the \((k-3)k\)th step. So we get \((1, 2, \cdots, k-4, k-3, k-1, k-1, k-1)\) after the \((k-2)k\)th step. Further we have \((1, 2, \cdots, k-4, k-2, k-2, k-2, k)\) after the \(((k-2)k+1)\)th step, \((1, 3, 3, 3, 5, \cdots, k)\) after the \(((k-2)k+k-4)\)th step, hence \((1, 2, \cdots, k-2, k-1, k)\) after the \((k-1)k\)th step. This completes the proof.

We shall next show that for any triangular number \(n = 1+2+\cdots+k\), the partition \((n)\) reaches the consecutive state in \((n-k)\)th steps, where \((n)\) is the next state of the partition \((1, 1, \cdots, 1)\) by Bulgarian operation.

Put \(S_m = 1+2+\cdots+m\) with \(1 \leq m \leq k-1\). We shall show by induction on \(m\) the state after the \(S_m\)th step is \((1, 2, \cdots, m, n-S_m)\).

The state after the 1st step is \((1, n-1)\) and the state after the 3rd step is \((1, 2, n-3)\), so the assertion holds for \(m = 1, 2\).

Suppose \(3 \leq m \leq k-1\). By induction we may have \((1, 2, \cdots, m-1, n-S_{m-1})\) after the \(S_{m-1}\)th step. Then we have \((1, 2, \cdots, m-2, m, n-S_{m-1}-1)\) after the \((S_{m-1}+1)\)th step, \((1, 3, 4, \cdots, m, n-S_m+2)\) after the \((S_{m-1}+m-2)\)th step, so \((1, 2, \cdots, m, n-S_m)\) after the \((S_{m-1}+m) = S_m\)th step.

Hence, putting \(m = k-1\), we have \((1, 2, \cdots, k)\) after the \((n-k)\)th step because \(S_{k-1} = n-k\).

For \(t < S_{k-1}\), the state after the \(t\)th step cannot be consecutive con-
sidering \(n-t > k \). Therefore for the first time we reach the consecutive state after the \((n-k)\)th step.