Infinite 2-class field towers of some imaginary quadratic number fields

by

YUTAKA SUEYOSHI (Nagasaki)

Abstract. By the results of Golod-Shafarevich and Vinberg-Gaschütz, the 2-class field tower of an imaginary quadratic number field is infinite if the 2-rank of the ideal class group is greater than or equal to 5. In this paper, we study the case where the 2-class rank is equal to 4 and the field has only one negative prime discriminant. We prove that the 2-class field tower of such a field is infinite, except one type of Rédei matrix.

1. Introduction. Let \(K \) be an imaginary quadratic number field with discriminant \(d \), and \(C_K \) denote the ideal class group of \(K \). We mean by the 2-class field tower of \(K \) the sequence of fields \(K = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_i \subseteq \cdots \), where \(K_{i+1} \) is the Hilbert 2-class field \((i.e. \) the maximal unramified abelian 2-extension) of \(K_i \). If \(K_{i+1} \neq K_i \) for all \(i \), then we say that the 2-class field tower of \(K \) is infinite.

By the results of Golod-Shafarevich[3] and Vinberg-Gaschütz[12, 15], the 2-class field tower of \(K \) is infinite if 2-rank \(C_K \geq 5 \). On the other hand, Koch[6] and Hajir[4, 5] proved that the 2-class field tower of \(K \) is infinite if 4-rank \(C_K \geq 3 \). When 2-rank \(C_K = 3 \) and 4-rank \(C_K = 0 \), there are some examples of infinite families of \(K \) with infinite (resp. finite) 2-class field towers[4, 7]. However, when 2-rank \(C_K = 4 \), no example of \(K \) with finite 2-class field tower has ever been known. It has been conjectured[9] that the 2-class field tower of such a \(K \) is always infinite. In this direction, Benjamin[1, 2] proved that the 2-class field tower of \(K \) is infinite if 2-rank \(C_K = 4 \) and 4-rank \(C_K = 2 \), except some type of Rédei matrix of \(K \).

In this paper, we study the case where 2-rank \(C_K = 4 \) and exactly one negative prime discriminant divides \(d \), and prove that the 2-class field tower of such a \(K \) is infinite, except one type of Rédei matrix of \(K \).

2000 Mathematics Subject Classification: Primary 11R37; Secondary 11R11, 11R29.

Key words and phrases: quadratic fields, class group, class field tower.
To prove our theorem, we use Martinet’s inequalities[9] and their corollaries. We also use some properties of Rédei matrices[10, 11, 13, 14]. A similar problem for real quadratic number fields is treated by Maire[8], by a different method.

2. Martinet’s inequalities and their corollaries. Let K be an imaginary quadratic number field.

Martinet’s inequality (general case)[9]. Let E/F be a quadratic extension of number fields. We denote by r_1 (resp. r_2) the number of real (resp. imaginary) places of F. We also denote by t (resp. ρ) the number of finite (resp. infinite) places of F which ramify in E. If the inequality

$$t \geq r_1 + r_2 - \rho + 3 + 2\sqrt{2(r_1 + r_2)} - \rho + 1$$

holds, then the 2-class field tower of E is infinite.

Martinet’s inequality I. Let F be a totally real number field of degree n, and E a totally imaginary quadratic extension of F. Let t be the number of prime ideals of F which ramify in E. If the inequality

$$t \geq 3 + 2\sqrt{n + 1}$$

holds, then the 2-class field tower of E is infinite.

Proof. Since $r_1 = \rho = n$ and $r_2 = 0$, the assertion follows from the general case of Martinet’s inequality.

Corollary 1. Let F be a real quadratic number field. Suppose that four rational primes split in F and ramify in K, or that a rational prime remains prime in F and three other rational primes split in F and these four rational primes ramify in K, then the 2-class field tower of $E = FK$ is infinite.

Proof. Since $n = 2$ and $t \geq 7 \geq 3 + 2\sqrt{2 + 1} = 6.464\cdots$ in these cases, the 2-class field tower of $E = FK$ is infinite by Martinet’s inequality I.

Corollary 2. Let F be a totally real number field of degree 4. Suppose that two rational primes split completely in F and ramify in K, or that
a rational prime splits completely in F and two other rational primes are unramified and split into at least two primes in F and these three rational primes ramify in K, then the 2-class field tower of $E = FK$ is infinite.

Proof. Since $n = 4$ and $t \geq 8 \geq 3 + 2\sqrt{4 + 1} = 7.472 \cdots$ in these cases, the 2-class field tower of $E = FK$ is infinite by Martinet’s inequality I.

Martinet’s inequality II. Let F be a totally imaginary number field of degree n, and E a quadratic extension of F. Let t be the number of prime ideals of F which ramify in E. If the inequality

$$t \geq \frac{n}{2} + 3 + 2\sqrt{n + 1}$$

holds, then the 2-class field tower of E is infinite.

Proof. Since $r_1 = \rho = 0$ and $r_2 = \frac{n}{2}$, the assertion follows from the general case of Martinet’s inequality.

Corollary 3. Let F be an imaginary quadratic number field. Suppose that four rational primes split in F and ramify in K, then the 2-class field tower of $E = FK$ is infinite.

Proof. Since $n = 2$ and $t \geq 8 \geq \frac{2}{2} + 3 + 2\sqrt{2 + 1} = 7.464 \cdots$, the 2-class field tower of $E = FK$ is infinite by Martinet’s inequality II.

3. The case with one negative prime discriminant. Let K be an imaginary quadratic number field with discriminant d. First we recall some properties of Rédei matrices of quadratic number fields[10, 11, 13, 14].

A rational integer is called a discriminant if it is the discriminant of a quadratic number field or equal to 1. A discriminant which is divisible by only one prime is called a prime discriminant. Prime discriminants are denoted by $p^* = (-1)^{\frac{d-1}{2}}p$ (if p is an odd prime), or $p^* = -4$, 8 or -8 (if p is equal to 2). Let $d = p_1^*p_2^*\cdots p_t^*$ be the unique factorization of d into a product of prime discriminants. By genus theory, we have 2-rank $C_K = t - 1$.

Using Kronecker symbols $(\frac{D}{p})$, where D is a discriminant and p is a prime number satisfying $p \nmid D$, we define the Rédei matrix $R_K = (a_{ij}) \in M_{4t}({\mathbb{Z}}/2{\mathbb{Z}})$ of K by

3
By the definition of the Kronecker symbol, we have \(a_{ij} = 0 \) if and only if the rational prime \(p_j \) splits in \(Q(\sqrt{p_i^*}) \). Note that the sum of all row vectors of \(R_K \) is equal to the zero vector \(0 \) in \((\mathbb{Z}/2\mathbb{Z})^t \) so that rank \(R_K \leq t - 1 \) and the solution space \(X \) of the linear equations \(xR_K = 0 \) \((x \in (\mathbb{Z}/2\mathbb{Z})^t) \) contains the vector \(1 = (1, 1, \cdots, 1) \). By the results of Rédei and Rédei-Reichardt, we have 4-rank \(C_K = t - 1 - \text{rank} \ R_K \).

In the case where \(p_i^* \neq -4 \) and \(p_j^* \neq -4 \), we have \(a_{ij} = a_{ji} \) if and only if \(p_i^* > 0 \) or \(p_j^* > 0 \), by the quadratic reciprocity law. Therefore, if exactly one negative prime discriminant \((\neq 4) \) divides \(d \), then \(R_K \) is a symmetric matrix.

Theorem. Let \(K \) be an imaginary quadratic number field with discriminant \(d \). Suppose that 2-rank \(C_K = 4 \) and exactly one negative prime discriminant divides \(d \). Let \(d = p_1^* p_2^* p_3^* p_4^* p_5^* \) \((p_i^* < 0) \) be the unique factorization of \(d \) into a product of prime discriminants. Then the 2-class field tower of \(K \) is infinite, except the case where

\[
R_K = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1
\end{pmatrix}
\]

by changing the order of \(p_i \)'s \((2 \leq i \leq 5) \). In the exceptional case, \(p_1^* \neq -4 \) and the 4-rank of \(C_K \) is equal to 0.

Proof. First, suppose that \(p_i^* = 4 \), then we have \(p_j \equiv 1 \pmod{4} \) for any \(j \) \((2 \leq j \leq 5) \). Put \(F = Q(\sqrt{p_i^*}) = Q(\sqrt{-T}) \), then four rational primes \(p_j \) \((2 \leq j \leq 5) \) split in \(F \) and ramify in \(K \). Hence, the 2-class field tower of \(E = FK = K(\sqrt{-T}) \) is infinite by Corollary 3. Since \(E/K \) is an unramified 2-extension, the 2-class field tower of \(K \) is also infinite.
In the following, we assume that $p_1^*
eq -4$. Therefore, R_K is a symmetric matrix. For each Rédei matrix R_K, if we could find a subfield $F = \mathbb{Q}(\sqrt{p_i}, \sqrt{p_j})$, $\mathbb{Q}(\sqrt{p_i}, \sqrt{p_j\sqrt{p_k}})$ or $\mathbb{Q}(\sqrt{p_i\sqrt{p_j}}, \sqrt{p_j\sqrt{p_k}})$ ($i, j, k \in \{2, 3, 4, 5\}$) of the genus field $\mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_5})$ of K which satisfies the condition of Corollary 2, then the 2-class field tower of $E = FK$ would be infinite. Since E/K is an unramified 2-extension, we conclude that the 2-class field tower of K is also infinite, in those cases.

First, suppose that there exists a column vector $a_j = (a_{ij})$ ($1 \leq j \leq 5$) of R_K for which at least two of a_{ij}’s ($2 \leq i \leq 5$, $i \neq j$) are 0, then, assuming that $a_{ij} = a_{kj} = 0$ ($i \neq j$, $k \neq j$), we put $F = \mathbb{Q}(\sqrt{p_i}, \sqrt{p_j})$. Since the rational prime p_j splits completely in F and ramifies in K, and two rational primes p_i, p_m ($\{i, j, k, l, m\} = \{1, 2, 3, 4, 5\}$) are unramified and split into at least two primes in F and ramify in K, the 2-class field tower of $E = FK$ is infinite by Corollary 2. Hence, the 2-class field tower of K is also infinite.

In the following, we assume that at most one of a_{ij}’s ($2 \leq i \leq 5$, $i \neq j$) is 0 for each column vector $a_j = (a_{ij})$ ($1 \leq j \leq 5$) of R_K.

(i) The case where one of a_{i1}’s ($2 \leq i \leq 5$) is 0: In this case, we may assume that $a_{21} = 0$ and $a_{31} = a_{41} = a_{51} = 1$ without loss of generality. If $a_{32} = a_{42} = a_{52} = 1$, then we put $F = \mathbb{Q}(\sqrt{p_3p_4}, \sqrt{p_3p_5})$. Since $\left(\frac{p_3p_4}{p_j}\right) = (-1)(-1) = 1$ for each $j \in \{1, 2\}$ and $i, k \in \{3, 4, 5\}$, two rational primes p_1 and p_3 split completely in F and ramify in K. Therefore, the 2-class field tower of $E = FK$ is infinite by Corollary 2, and the 2-class field tower of K is also infinite. On the other hand, if one of a_{i2}’s ($3 \leq i \leq 5$) is 0, then we may assume that $a_{32} = 0$ and $a_{42} = a_{52} = 1$ without loss of generality. So, we have $a_{23} = 0$ and $a_{43} = a_{53} = 1$ by our assumption and

$$R_K = \begin{pmatrix}
1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & * & * \\
1 & 1 & 1 & * & *
\end{pmatrix},$$

where the asterisks “*” mean 0 or 1. We put $F = \mathbb{Q}(\sqrt{p_2}, \sqrt{p_4p_5})$. Since $\left(\frac{p_2}{p_j}\right) = 1$ and $\left(\frac{p_4p_5}{p_j}\right) = (-1)(-1) = 1$ for $j \in \{1, 3\}$, two rational primes p_1 and p_3 split completely in F and ramify in K. Therefore, the 2-class field tower of $E = FK$ is infinite by Corollary 2, and the 2-class field tower of K
is also infinite.

(ii) The case where \(a_{21} = a_{31} = a_{41} = a_{51} = 1 \): If there exists a column vector \(a_j = (a_{ij}) \) (\(2 \leq j \leq 5 \)) of \(R_K \) satisfying \(a_{ij} = 1 \) for all \(i \) (\(2 \leq i \leq 5, \ i \neq j \)), then we put \(F = \mathbb{Q}(\sqrt{p_k p_l}, \sqrt{p_k p_m}) \) \(\{j, k, l, m\} = \{2, 3, 4, 5\} \). In this case, as in the first half of the case (i), we see that two rational primes \(p_1 \) and \(p_j \) split completely in \(F \) and ramify in \(K \). Therefore, the 2-class field tower of \(E = FK \) is infinite by Corollary 2, and the 2-class field tower of \(K \) is also infinite. However, if there exists no such column vector \(a_j \) (\(2 \leq j \leq 5 \)) of \(R_K \), then we cannot find an appropriate field \(F \) which satisfies the condition of Martinet’s inequality. In this case, we have \(a_{23} = a_{32} = a_{45} = a_{54} = 0 \), by changing the order of \(p_i \)’s. So, \(R_K \) is as described in the assertion of our Theorem. This completes the proof of Theorem.

Remark 1. In Theorem 1 of [1], Benjamin classified the case with only one negative prime discriminant \(\neq -4 \) and 2-rank \(C_K = 4 \) into 32 types, by using “Kronecker symbol configurations”. Among them, the infiniteness of the 2-class field tower remained unsettled for 5 types. Actually, there are two more Kronecker symbol configurations \((\frac{p_1}{p_3}) = (\frac{p_4}{p_3}) = (\frac{p_2}{p_3}) = 1 \) with 4-rank \(C_K = 0 \), and \((\frac{p_2}{p_3}) = (\frac{p_4}{p_3}) = (\frac{p_3}{p_5}) = (\frac{p_4}{p_5}) = -1 \) with 4-rank \(C_K = 2 \). The numbers of Rédei matrices (= the numbers of Kronecker symbol configurations) with given 4-rank are as follows:

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{4-rank } C_K & 4 & 3 & 2 & 1 & 0 \\
\text{total} & & & & & \\
\hline
\text{\# of Rédei matrices} & 1 & 2 & 8 & 10 & 13 \\
\hline
\end{array}
\]

In our Theorem, we showed the infiniteness of the 2-class field tower for 33 types, except the third case of Theorem 1(C) in [1] where \(p_4 \) is negative \(\neq -4 \) and \((\frac{p_2}{p_5}) = (\frac{p_4}{p_5}) = 1 \).

Examples. The following are some examples of imaginary quadratic number fields with only one negative prime discriminant \(\neq -4 \), 2-rank \(C_K = 4 \) and the Rédei matrix of exceptional type:

\[
\mathbb{Q}(\sqrt{-3 \cdot 5 \cdot 29 \cdot 8 \cdot 17}), \quad \mathbb{Q}(\sqrt{-7 \cdot 5 \cdot 41 \cdot 13 \cdot 17}),
\]

\[
\mathbb{Q}(\sqrt{-3 \cdot 5 \cdot 41 \cdot 17 \cdot 53}), \quad \mathbb{Q}(\sqrt{-8 \cdot 5 \cdot 61 \cdot 37 \cdot 53}).
\]
Remark 2. In Theorems 1 and 2 of [2], Benjamin proved the infiniteness of the 2-class field tower of an imaginary quadratic number field K with 2-rank $C_K = 4$ and 4-rank $C_K = 2$, in the case where R_K is not of the type

\[
\begin{pmatrix}
* & 1 & 1 & 0 & 0 \\
* & 1 & 1 & 1 & 1 \\
* & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & * & * \\
1 & 1 & 1 & * & *
\end{pmatrix}
\]

with $p_1^* = -4$, $p_2^* < 0$, $p_3^* < 0$ and $p_4^* > 0$, $p_5^* > 0$. With the methods above one can prove the Theorems of Benjamin and Koch-Hajir as well.

Acknowledgments. The author would like to thank the referee for his careful reading of the manuscript and for his helpful comments and suggestions.

References

[13] Y. Sueyoshi, *On a comparison of the 4-ranks of the narrow ideal class groups of* \(\mathbb{Q}(\sqrt{m}) \) and \(\mathbb{Q}(\sqrt{-m}) \), Kyushu J. Math. 51(1997), 261-272.

Department of Computer and Information Sciences
Faculty of Engineering, Nagasaki University
1-14 Bunkyo-machi, Nagasaki 852-8521
Japan
E-mail: sueyoshi@net.nagasaki-u.ac.jp