<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>せん断パネルダンパーの設計式に関する一考察 その1 パネル補剛条件</td>
</tr>
<tr>
<td>Author(s)</td>
<td>玉井 宏章 島津 勝</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学大学院工学研究科研究報告 環境科学研究所ラボルトリー</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/28908</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
A Design Formula of Shear Panel Damper
Part 1 Panel Stiffener’s Requirements

by
Hiroyuki TAMAI* and Masaru SHIMAZU*

The shear panel is a damper for buildings. It is possible to reduce a response of buildings under a severe earthquake. It is a great candidate to prevent seismic disaster for tall buildings to pay minimum costs. To improve the performance of the damper, shear buckling of the panel must be prevented under cyclic loading. To prevent a buckling of the panel, vertical and horizontal ribs are attached the panel. This paper showed a design formula for the stiffener (ribs) of shear panel damper, then checked the panel stiffener’s requirements through the shear buckling analysis using finite elements methods.

Key words: Shear Panel, Damper, Stiffener, Shear Buckling

1. はじめに

近年、建築構造において普及型の制振鋼材ダンパーとしてせん断パネルダンパーが用いられている1). 日本建築学会では、現在、鋼構造制振構造設計指針を策定中であり、せん断パネルダンパーを普及させるための指針を定めつつある。このパネルの座屈を防ぎ、降伏変形後において大きな変形領域まで耐力を維持するという、いわゆる変形性能を増大させるためにパネル全体の面外変形を補剛する材が取り付けられる。一般的に図1に示すような鉛直スチフナ、水平スチフナでパネルが十分に面外補剛されるよう設定する。補剛材の形状は、設計変形角内の繰り返し載荷において、パネル全体に補剛材をまたぐ全体せん断座屈を生じない剛性、幅厚比を設定する必要がある。

パネル全体でのせん断座屈を防止しうる補剛材の数と断面性能はChuslip, Usamiによって検討されている2).3).本研究は、周辺単純支持パネルの弾性せん断座屈応力度を有限要素有限有効解析によって求め、そのパネル全体座屈を防止する条件を検証するとともに、スチフナ設置形式を簡略化した場合の断面性能の

平成24年6月25日受理
* システム科学部門（Division of System Science）
評価方法の妥当性を併せて検討する。

2. 補剛材付パネルのせん断座屈応力評価式と最適スチフナ剛性比

補剛材の設置形式として、水平と鉛直のスチフナの数（）が等しい場合を考える。補剛材付パネルのせん断座屈応力\(\tau\)は、全体座屈を生じない場合、図示したように板座屈として以下のよう式で表される。

\[
\tau = \frac{E \cdot t^2}{12 \cdot (1 - \nu^2)} \cdot \frac{\kappa_s}{h}
\]

(1.a) ここで、\(\kappa_s = \kappa_{panel}\)

(1.b)

\[
\alpha \geq 1 \quad \kappa_{panel} = (5.35 + 4/\alpha^2) \cdot (n+1)^2
\]

(2.a) \[
0 < \alpha < 1 \quad \kappa_{panel} = (4 + 5.35/\alpha^2) \cdot (n+1)^2
\]

(2.b) \(\kappa_{panel}\) は、全体座屈しない場合の板座屈係数、\(\alpha = \frac{d}{h}\)（\(d\)：パネル幅、\(h\)：パネル高さ）であり、\(n\)はパネル高さ方向、幅方向の補剛材本数、\(t_w\)は、パネルの板厚である。

パネル板曲げ剛性に対するスチフナの曲げ剛性の比（スチフナ剛性比と呼ぶ）を次式のように定義する。

\[
y_s = \frac{E \cdot I}{D \cdot h}
\]

(3) ここで、\(D = \frac{E \cdot t^4}{12 \cdot (1 - \nu^2)}\)：パネルの板曲げ剛性

\(E \cdot I\)：補剛材の曲げ剛性

スチフナの曲げ剛性を考慮して、パネルの全体座屈を許容した板座屈係数\(\kappa_s\)は、レーリー法によって求めた値を数式化して次式で与えられている。2)

\[
0.5 \leq \alpha < 1 \quad \kappa_s = (11.8 - 22.5\alpha^{-1} + 20.7\alpha^{-2} - 8.96\alpha^{-3} + 1.30\alpha^{-4})
\]

\[
\times \frac{18.4 + y_s \cdot (11.1 \cdot n^2 / \alpha + 1.68 \cdot n \cdot \alpha^2)}{5.89 + y_s \cdot (0.94 - 0.20 \cdot n)} \]

(4.a,b)

補剛材付の全体パネルの弾性せん断座屈応力が、スチフナで区切られたサブパネルの弾性せん断座屈応力と等しくなる条件は、(2.a,b)式と(4.a,b)式とを等値化した結果から、式文のようにまとめられている。3)

\[
y_s = y_s^* \]

(5.a) ここに、

\[
y_s^* = \left(\frac{23.1}{n^{3.5}} \cdot \frac{1.35}{n^{2.5}} \cdot \left(1 + \frac{1 - 0.1}{\alpha \cdot n^{1.3 - 0.6 \alpha^2}} \right)^{2 - 1} \right) \]

(5.b)

この\(y_s^*\)は最適スチフナ剛性比と呼ばれる。
せん断パネルダンパーの設計式に関する一考察 その1 パネル補剛条件

表 2 解析結果（R1C1、板座屈係数、算定値との比、座屈半波数）

<table>
<thead>
<tr>
<th>R1C1</th>
<th>γ</th>
<th>α</th>
<th>α=0.5</th>
<th>α=0.75</th>
<th>α=1.0</th>
<th>α=1.5</th>
<th>α=2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.2 (1.09)</td>
<td>20.9 (1.05)</td>
<td>13.6 (0.95)</td>
<td>10.0 (1.04)</td>
<td>9.3 (0.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50.7 (1.16)</td>
<td>22.3 (1.09)</td>
<td>16.6 (0.99)</td>
<td>12.0 (1.06)</td>
<td>11.1 (1.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68.8 (1.18)</td>
<td>33.3 (1.12)</td>
<td>22.5 (1.05)</td>
<td>16.3 (1.10)</td>
<td>15.0 (1.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>83.2 (1.15)</td>
<td>42.9 (1.10)</td>
<td>28.5 (1.06)</td>
<td>20.6 (1.10)</td>
<td>18.9 (1.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>99.5 (1.11)</td>
<td>50.7 (1.06)</td>
<td>34.9 (1.04)</td>
<td>25.3 (1.07)</td>
<td>23.0 (1.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>109.1 (1.08)</td>
<td>57.5 (1.02)</td>
<td>40.1 (1.02)</td>
<td>29.3 (1.04)</td>
<td>26.1 (1.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>115.5 (1.06)</td>
<td>61.7 (1.01)</td>
<td>43.5 (1.01)</td>
<td>31.9 (1.02)</td>
<td>28.0 (1.05)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

κs α=0.5 α=0.75 α=1.0 α=1.5 α=2.0

表 3 解析結果（R1C0、板座屈係数、算定値との比、座屈半波数）

<table>
<thead>
<tr>
<th>R1C0</th>
<th>γ</th>
<th>α</th>
<th>α=0.5</th>
<th>α=0.75</th>
<th>α=1.0</th>
<th>α=1.5</th>
<th>α=2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.0 (1.10)</td>
<td>16.3 (1.13)</td>
<td>11.1 (1.17)</td>
<td>8.0 (1.03)</td>
<td>7.3 (0.82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>33.9 (1.13)</td>
<td>22.4 (1.08)</td>
<td>15.5 (1.14)</td>
<td>10.2 (1.03)</td>
<td>8.8 (0.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>38.5 (1.11)</td>
<td>28.5 (1.04)</td>
<td>22.3 (1.04)</td>
<td>15.1 (1.05)</td>
<td>12.0 (0.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>40.6 (1.09)</td>
<td>30.8 (1.05)</td>
<td>26.7 (1.01)</td>
<td>20.8 (1.01)</td>
<td>17.0 (1.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>41.1 (1.08)</td>
<td>31.6 (1.04)</td>
<td>27.9 (1.01)</td>
<td>23.3 (0.99)</td>
<td>20.1 (0.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>41.6 (1.07)</td>
<td>32.6 (1.03)</td>
<td>29.0 (1.00)</td>
<td>25.8 (0.96)</td>
<td>24.2 (0.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>42.0 (1.07)</td>
<td>33.4 (1.01)</td>
<td>30.0 (0.98)</td>
<td>27.7 (0.94)</td>
<td>26.9 (0.89)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

κs α=0.5 α=0.75 α=1.0 α=1.5 α=2.0

表 4 設置形式の影響（R1C1H、板座屈係数、算定値との比、座屈半波数）

<table>
<thead>
<tr>
<th>R1C1H</th>
<th>γ</th>
<th>α</th>
<th>α=0.5</th>
<th>α=0.75</th>
<th>α=1.0</th>
<th>α=1.5</th>
<th>α=2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.9 (1.04)</td>
<td>20.7 (1.01)</td>
<td>14.1 (0.91)</td>
<td>10.4 (1.00)</td>
<td>9.6 (0.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>52.9 (1.11)</td>
<td>25.5 (1.04)</td>
<td>17.3 (0.93)</td>
<td>12.6 (1.02)</td>
<td>11.6 (0.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>68.6 (1.07)</td>
<td>34.3 (1.05)</td>
<td>23.4 (1.01)</td>
<td>17.0 (1.06)</td>
<td>15.6 (1.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>86.0 (1.04)</td>
<td>42.7 (1.08)</td>
<td>29.1 (1.04)</td>
<td>21.2 (1.07)</td>
<td>19.4 (1.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>108.3 (1.09)</td>
<td>56.3 (1.05)</td>
<td>39.3 (1.04)</td>
<td>28.8 (1.05)</td>
<td>25.9 (1.07)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

κs α=0.5 α=0.75 α=1.0 α=1.5 α=2.0

図 4 補剛材付板座屈係数値の変化（R1C1）

スチフナの取り付け方法の代表的なものに、図2に示す6種類がある。パネルの片側に設置する場合、パネルの両側に設置する場合、左右フランジプレートに溶接する場合（スカラップ有と無し）と片側は溶接しない場合等である。

Ⅻ
尚、補剛材の断面2次モーメント、I_sは、パネル表裏に同じせいb_sのスチフナを設置する場合（図2(e),(f))は、次式で評価する。

$$I_s = t_s \left(2 \cdot b_s + t_s \right)^3 / 12$$ \hspace{1cm} (6.a)

また設置形式を簡略化し、表側に補剛材を設置する場合や、表側に補剛材を一方向に設置し裏側にはそれと直交させて補剛材を設置する場合（図2(a)-(d))は、次式で評価する。

$$I_s = t_s \cdot b_s \left(b_s / t_s \right)^3 = t_s \cdot b_s^3 / 3$$ \hspace{1cm} (6.b)

ここに、t_s、b_sは補剛材の板厚とせい、t_sはパネル板厚である。

次に、米国のシアリング4)、5)のように水平スチフナのみを用いる場合（$n_s = n_d = 0$）の、パネルが全体座屈しない場合の板座屈係数k_{panel}、全体座屈を許容した板座屈係数k_{s}、最適スチフナ剛性比γ_sは、次式のように整理できる。

$$\alpha \cdot (n + 1) \geq 1, \quad k_{panel} = \left(5.35 + 4/\alpha \cdot (n + 1)^2 \right) \cdot (n + 1)^2$$ \hspace{1cm} (7.a)

$$0 < \alpha \cdot (n + 1) < 1, \quad k_{panel} = \left(4 + 5.35/\alpha \cdot (n + 1)^2 \right) \cdot (n + 1)^2$$ \hspace{1cm} (7.b)

$$0.5 \leq \alpha < 1, \quad \kappa_s = \left(40.0\alpha \cdot (n + 1)^2 \cdot 6.62\alpha^2 - 6.19\alpha^3 - 0.66\alpha^4 \right) \times 17 + \gamma_s \cdot \left(2.75\alpha \cdot (n + 1)^2 \cdot 1.03\alpha \cdot \alpha^3 \right) / 57.6 + \gamma_s \cdot \left(5.00\alpha \cdot (n + 1)^2 \cdot 0.11\cdot n\alpha \cdot \alpha^3 \right)^2$$ \hspace{1cm} (8.a,b)
せん断パネルダンパーの設計式に関する一考察 その1 パネル補剛条件

\[
\gamma_s' = \frac{27.3 \cdot n^{.4} \cdot \alpha - 23.3 \cdot \alpha}{0.2 \cdot n^{.5} - 0.60/\alpha + 0.52/\alpha^2}
\]

(9)

3. 解析の概要

3.1 補剛材付パネルの構造モデルと解法

図3に、補剛材付パネルの有限要素分割の状況を示す。解析範囲は、パネル全領域とし、一部強制変位で面内せん断応力を発生させ、パネル周囲は単純支持とした。パネル周辺におけるスチフナの境界条件は自由となっている。要素分割は、図3の例では、パネル部2400要素、スチフナ800要素で節点数は3300節点であり、面内変形、面外曲げ変形とも十分な精度を有しており離散化誤差は小さい。

要素モデルは、1節点6自由度の4節点薄板シェル要素を採用し、数値積分は完全数値積分を採用した。強制変形で生じたパネル面内せん断応力を初期応力としてせん断座屈固有値解析を行って、最小弾性せん断座屈応力を求め、パネル全体で観察される座屈波形の半波数をカウントした。

3.2 解析シリーズ

解析シリーズの概要を表1に示す。パネルには通常の鋼のヤング係数205kN/mm²、ポアソン比0.3を用いる。パネル板厚\(t_f\)、スチフナ板厚\(t_s\)は3.5mm、スチフナ幅\(b_s\)（片側幅）を30mmとする。

解析は、図2(f)の形式の水平と鉛直スチフナの本数を各1本とし、パネル板厚\(t_f\)を400mmとして、パネル辺長比\(\alpha\)を0.5〜2.0まで、パネル板曲げ剛性に対するスチフナの曲げ剛性の比\(\gamma_s\)（以下ではスチフナ剛性比と呼ぶ）を1〜80まで変化させたシリーズR1C1(1x5=35ケース)と水平スチフナのみ1本設置し、パネル高さ\(h\)を200mmとして、パネル辺長比\(\alpha\)を0.5〜2.0まで、スチフナ剛性比\(\gamma_s\)を1〜400まで変化させるシリーズR1C0(7x5=35ケース)およびR1C1シリーズと同様の解析を、スチフナの設置形式を図2(d)とする場合RICH(7x5=35ケース)の計105ケースの解析を行った。なお、解析にあたって所定の\(\gamma_s\)となるようにスチフナのヤング係数を調節した。

4. 解析結果と考察

解析結果を、図4〜8、表2〜4に示す。図4は補剛材付パネルの板座屈係数のパラメータの影響をみるために、R1C1シリーズの結果を立体コンター図にしたものであり、水平軸は\(\alpha\)と\(\gamma_s\)、縦軸は板座屈係数となっている。図5は、全体座屈からサブパネル座屈に移行する中間の状態の座屈波形を、R1C1,RICH及びRICOシリーズについて示している。図6は、全体座屈とサブパネル座屈の中間であることを示している。表4は、表2と同様の値を、RICHシリーズについて示しており、スチフナ設置形式の影響を示している。図7はR1C1シリーズ、RICOシリーズについて\(\kappa_s\)と辺長比\(\alpha\)との関係を、2節の算定値を実線で、サブパネルが座屈するとして求めた\(\kappa_{panel}\)と\(\alpha\)の関係を破線で、有限要素解析値を○□△●■で示している。

7 は R1C1 シリーズ、RICO シリーズについて\(\kappa_s\)と\(\gamma_s\)との関係を、有限要素解析値を実線で、2 節の算定値を破線で、サブパネルが座屈するとして求めた\(\kappa_{panel}\)と最適スチフナ剛性比\(\gamma_s^*\)の関係を○で示す。図8は、スチフナ設置形式の板座屈係数に及ぼす影響を判定するために\(\kappa_s\)と\(\gamma_s\)との関係を、パネルの両面にスチフナを設置する場合（R1C1）を実線で、片側ののみにスチフナを設置する場合（RICH）を破線で示している。これらの結果から以下のことが分かる。

1) 図4からパネル辺長比\(\alpha\)が小さいほど、またスチフナ剛性比\(\gamma_s\)が大きいほど、補剛材付パネルのせん断座屈に対する板座屈係数\(\kappa_s\)は大きくなる。また、\(\alpha\)の影響が比較的大きい。
2) 図5から全体座屈からサブパネル座屈へと移行する中間の座屈モードが存在する。その際、パネル辺長比αが小さい場合ではスチフナには捩れ変形が生じる。

3) 図6、7、表2、3から、Chuslip, Usamiが提案した補剛材パネルの板座屈係数κ_sの算定式は、パネル辺長比が小さい領域では精度はややや悪くなり18%程度の誤差がある。

4) 図7より最適スチフナ剛性比γ_s*とサブパネル座屈する場合の板座屈係数κ_{panel}のプロット点○は、実線の有限要素解上にあることから、Chuslip, Usamiが提案した最適スチフナ剛性比の算定式は、良好な精度を有している。

5) 図8より、パネルの片側のみに補剛材を設置しても何ら問題はなく、(6.b)式で断面性能を評価すればパネル両面に設置した場合と同じ補剛効果が期待できる。

5. まとめ

本研究では周辺単純支持パネルの弾性せん断座屈応力度を有限要素固有値解析によって求め、パネル全体座屈を防止する条件を検証した。補剛形式を簡略化した場合の断面性能評価方法の妥当性を併せて検討した。得られた知見は以下のようになる。

1) Chuslip, Usamiが提案した最適スチフナ剛性比の算定式は、固有価解析結果と良好に整合することから、スチフナが縦横とも1本設置の場合と横1本設置の場合では妥当である。

2) パネルの片側のみに補剛材を設置しても断面性能を適正に評価すれば、パネル両面に設置した場合と同じ補剛効果が期待できる。

謝辞：本研究は、日本建築学会鋼構造制振小委員会（主査：笠井和彦）の活動の一部を取りまとめたものである。小委員会の主査、幹事、委員から貴重なご意見をいただきました。経費の一部は、科学研究助成助成事業（学術研究助成基金助成金）（課題番号：23560687 研究代表者：玉井宏章）で賄われました。また、計算実施にあたって共同研究施設である九州大学情報基盤研究開発センター内の日立SR16000、AIX OS上のMarc/Mentat2011を利用させていただいた。ここに記して謝意を表する。

参考文献

