<table>
<thead>
<tr>
<th>Title</th>
<th>Protective Role of Interferon Regulatory Factor 3-Mediated Signaling against Prion Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishibashi, Daisuke; Atarashi, Ryuichiro; Fuse, Takayuki; Nakagaki, Takehiro; Yamaguchi, Naohiro; Satoh, Katsuya; Honda, Kenya; Nishida, Noriyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Virology, 86(9), pp.4947-4955; 2012</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-05</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/10069/30199">http://hdl.handle.net/10069/30199</a></td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012, American Society for Microbiology.</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Protective role of interferon regulatory factor 3-mediated signaling against prion infection

Daisuke Ishibashi 1*, Ryuichiro Atarashi 1,3, Takayuki Fuse 1, Takehiro Nakagaki 1, Naohiro Yamaguchi 1, Katsuya Satoh 1, Kenya Honda 2 and Noriyuki Nishida 1,4

1. Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
2. Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
3. Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki, Japan.
4. Global Centers of Excellence Program, Nagasaki University, Nagasaki, Japan.

*: Corresponding author: Daisuke Ishibashi,

Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.

Tel.: +81-95-819-7059
Fax: +81-95-819-7060
E-mail: dishi@nagasaki-u.ac.jp

Keywords: prion, innate immunity, interferon regulatory factor 3 (IRF3)
ABSTRACT

Abnormal prion protein (PrP<sup>Sc</sup>) generated from the cellular isoform of PrP (PrP<sup>C</sup>) is assumed to be the main or sole component of the pathogen, called prion, of transmissible spongiform encephalopathies (TSE). Because PrP is a host-encoded protein, acquired immune responses are not induced in TSE. Meanwhile, activation of the innate immune system has been suggested to partially block the progression of TSE; however, the mechanism is not well understood. To further elucidate the role of the innate immune system in prion infection, we investigated the function of interferon regulatory factor 3 (IRF3), a key transcription factor of the MyD88-independent type I interferon (IFN) production pathway. We found that IRF3-deficient mice exhibited significantly earlier onset with three murine TSE strains, namely, 22L, FK-1, and mBSE following intraperitoneal transmission, when compared with wild-type controls. Moreover, overexpression of IRF3 attenuated prion infection in the cell culture system, while PrP<sup>Sc</sup> was increased in prion-infected cells treated with small interfering RNAs (siRNA) against IRF3, suggesting that IRF3 negatively regulates PrP<sup>Sc</sup> formation. Our findings provide new insight into the role of the host innate immune system in the pathogenesis of prion diseases.
INTRODUCTION

Transmissible spongiform encephalopathies (TSE) are fatal zoonoses, and include Creutzfeldt–Jakob disease (CJD) in humans, and scrapie and bovine spongiform encephalopathy (BSE) in animals. All exhibit the three major histopathological features of spongiform change, neuronal loss and gliosis in the central nervous system (CNS) (30). The infectious agent, prion, is considered not to possess its own genome and to be composed mainly of the proteinase K (PK)-resistant and β-sheet-rich abnormal isoform of prion protein, designated PrP\textsuperscript{Sc}, which is generated by conformational conversion of the normal form of PrP (PrP\textsuperscript{C}) (43). In contrast to conventional pathogens, such as bacteria and virus, acquired immunity against prion infection is not elicited, probably because PrP is a host-encoded protein, resulting in immunotolerance to PrP\textsuperscript{Sc} (1).

Prior to activation of acquired immune responses, the invasion of pathogens, including bacteria and viruses, is first recognized by the innate immune system, with the switching on of the cellular defense system leading to the production of cytokines and interferons (IFNs). The innate immune responses are initiated through both toll-like receptors (TLRs) (2) and intracellular sensor molecules such as retinoic acid inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (MDA5), each of which recognizes specific components of foreign pathogens, namely pathogen-associated molecular patterns (PAMPs) (20). In addition, the innate immunity is the main system contributing to inflammation caused by microbial infection or tissue damage (3, 8).

Since gliosis, a major characteristic of TSE, is thought to be a kind of inflammatory response, it is reasonable to assume that innate immunity may play a role in the pathogenesis of TSE. Indeed, it was reported that pretreatment with complete Freund’s adjuvant (CFA) (39) or unmethylated CpG DNA (35), both of which activate innate immunity through TLRs, delays the onset of TSE in mice inoculated with mouse-adapted scrapie prion, suggesting that activation of innate immunity is protective against prion infection. In contrast, deletion of MyD88 gene, which is an essential intracellular signal transducer in all TLRs except for TLR3, has been shown not to significantly affect incubation time in the same mouse scrapie model (29). Thus, MyD88-dependent signaling pathways are unlikely to be implicated in prion infection in the absence of forced activation of innate immune responses by conventional PAMPs (2, 20). On the other hand, mice that possess a non-functioning mutation of TLR4, which activates not only MyD88-dependent but also MyD88-independent (also called
TRIF-dependent) pathway, develop scrapie earlier than control mice (36). Accordingly, it is suggested that blockade of TLR4 signaling pathway accelerates the progression of TSE. Nonetheless, the effects of the innate immune system on prion infection remain controversial and have not been fully clarified.

We focus on interferon regulatory factor 3 (IRF3), which is a key transcription factor of the MyD88-independent pathway that has an essential role in the type I IFN response to microbial infection, and whose deficiency in mice leads to susceptibility to many viruses (19). In this study, we investigated the role of IRF3 in prion infection using IRF3-deficient mice and prion-susceptible cell lines.

RESULTS

Prion infection is accelerated in IRF3-deficient mice.

To clarify the significance of IRF3-dependent signaling pathways in prion infection in vivo, we peripherally inoculated 22L strain into IRF3-gene knockout mice (IRF3-/-) and control wild-type (C57BL/6) mice. When the mice were challenged with 10\(^{-3}\) dilution of 22L inoculum by the intraperitoneal (i.p.) route, the IRF3-/- mice showed significantly abbreviated survival periods (257 ± 8 days, p < 0.001) compared with those of the control mice (281 ± 15 days) (Table 1 and Fig. 1A). To further investigate the protective effect of IRF3 on prion infection, the mice were challenged with 10\(^{-3}\) dilution of mouse-adapted BSE (mBSE) or Fukuoka 1 (FK-1) strain by the i.p. route. IRF3-/- mice showed shorter survival periods of mBSE (335 ± 37 versus 380 ± 33 days, p < 0.05), and FK-1 (251 ± 31 versus 321 ± 24 days, p < 0.01) compared with control mice (Table 1). The shortening of survival periods in the IRF3-/- mice is unlikely to be due to developmental defects in the brains or lymphoreticular organs, because IRF3-/- mice were shown to have normal lymphocyte populations in the thymus and spleen (33). Moreover, immunostaining with anti-follicular dendritic cell (FDC) antibody (CNA.42) (31) was performed to compare the FDC population in the spleen between IRF3-/- and wild-type mice. Staining reactions were similar in the two groups (Fig. 4B).

We examined for the presence of \(\text{PrP}^{\text{Sc}}\) in the brain tissues of terminal-stage infected with 22L prion strain by Western blotting. The levels of \(\text{PrP}^{\text{Sc}}\) in IRF3-/- mice at 32 weeks post-infection (w.p.i.) were equivalent to those of wild-type mice at 40 w.p.i. (Fig. 1B). Moreover, no significant differences were observed between wild-type mice and IRF3-/- mice in the accumulation of \(\text{PrP}^{\text{Sc}}\) in the lesion profiles of
PrP-immunostaining (Fig. 1C). Because spongiform changes and gliosis are common characteristics of prion diseases, brain sections including the cerebral cortex (Cx), hippocampus (Hi), thalamus (TH), cerebellum (CE), and pons (Po) from 22L-inoculated mice were examined by histologically and subjected to immunohistochemical analysis using anti-Iba-1 antibodies for microgliosis (Fig. 3A) or anti-GFAP for astrogliosis (Fig. 3B). The severity and distribution of vacuolation and glial activation in the IRF3-/- mice at 32 w.p.i. were indistinguishable from those in the wild-type mice at 40 w.p.i. (Fig 2 and 3), while IRF3-/- mice displayed significantly increased vacuolation (Fig. 2) and astrogliosis (Fig. 3B) in the Cx and CE at 25 w.p.i.. Collectively, these results suggest that the progression of TSE following i.p. transmission is accelerated in IRF3-/- mice, although genetic elimination of IRF3 does not affect the final neuropathological outcome. Furthermore, as shown in Table 2 and Fig. 4A, the deposition of PrPSc in the white pulp region of the spleens from the IRF3-/- mice was detectable in 1/5 at 2 w.p.i., 4/5 at 5 w.p.i., and 5/5 at 8 w.p.i., whereas none of the wild-type mice was positive at the same timepoints. These observations indicate that the rate of accumulation of PrPSc in the spleen was enhanced in the IRF3-/- mice.

**IRF3-dependent pathway is protective against prion infection in cell culture.**

We tested whether overexpression of IRF3 could affect the production of PrPSc in the cell culture models. The level of PrPC was not affected by the transient expression of the genes in uninfected N2a58 cells (data not shown). PrPSc was significantly decreased by overexpression of IRF3 in the 22L-N2a58 cells (Fig. 5A). We confirmed that the activated form of IRF3 (phosphorylated at Ser396 of IRF3) increases in a dose-dependent manner after transfection of the IRF3 gene in both 22L-N2a58 cells (Fig. 5A) and uninfected N2a58 cells (data not shown), indicating that the up-regulation of IRF3-phosphorylation seen in the Fig. 5A is most likely due to an increase in the level of IRF3 protein after transfection.

To investigate the effect of down-regulation of IRF3 in the 22L-N2a58 cells, we performed knockdown experiments using small interfering RNAs (siRNA). IRF3 expression was significantly decreased by two types of siRNA against IRF3, whereas β-actin expression, as the internal standard, was not changed (Fig. 5B). Application of siRNA did not influence the expression of PrPC in N2a58 cells (data not shown), whereas the level of PrPSc was increased in 22L-N2a58 cells treated with siRNA against
IRF3 (Fig. 5B). These data suggest that IRF3 has an inhibitory effect on the production of PrP<sup>Sc</sup> in the 22L-N2a58 cells.

To further evaluate the protective effect of IRF3, we established cell clones stably expressing HA-tagged IRF3 using another mouse PrP-overexpressed N2a cell clone (designated N2a75). Several HA-IRF3-negative and -positive clones were isolated by selection for resistance to hygromycin. HA-tagged IRF3 was expressed in clones A4, C1, and H3, which were accompanied by an increase in total IRF3 protein, while clones A1 and E1 were negative (Fig. 5C). After incubation with 22L-infected BH, the cell clones were subcultured for 5 passages, and analyzed by Western blotting with anti-PrP antibodies. The levels of PrP<sup>Sc</sup>/PrP<sup>C</sup> ratio were inversely correlated with the levels of IRF3/beta-actin ratio (Fig. 5C), indicating that enhanced expression of IRF3 effectively blocks new prion infection.

**DISCUSSION**

In the present study, we found that a genetic deficiency of IRF3 accelerates the progression of TSE following i.p. transmission in mice and the accumulation rate of PrP<sup>Sc</sup> in the spleen is increased in the IRF3-/- mice. Furthermore, we demonstrated that IRF3 has the inhibitory effect on the PrP<sup>Sc</sup> accumulation and the levels of IRF3 are inversely correlated with resistance to prion infection in cell culture.

IRF-3 is known to be constitutively expressed in many tissues and cells (6, 22, 45). Indeed, we confirmed the expression of IRF3 in brains (data not shown) and the N2a58 cells (Fig. 5). Furthermore, not only glial cells but also neurons express most innate immunity-related genes and produce type I IFN in response to virus infection (11). Although the role of IRF3 in prion propagation into the CNS is still unclear, we speculate that an absence of IRF-3 signaling leads to increased prion replication not only in peripheral tissues but also in the CNS. It would be of great value to examine this further using neuron-specific IRF3-disrupted mice or neuron-specific IRF3-expressing mice.

It was reported, in prion infection, that genetic disturbance of TLR4 (36) or IL-10 (41) leads to shorter incubation periods of prion infection. Since these, respectively, are an upstream and a downstream factor of IRF3-mediated pathway, the findings may be due in part to functional changes in the IRF3-mediated signaling.

Based on these results, two hypothetical models are proposed to explain the inhibitory
effect of IRF3 on the prion infection. The first is that MyD88-independent “pattern recognition receptors (PRRs)” such as TLR3, TLR4 or RIG-I/MDA5 might recognize prion, and the resulting activation of IRF3 could induce various IRF3-responsive genes that may participate in the protective effect. The fact that the in vivo administration of IFNs, a representative of the IRF3-responsive genes, previously failed to show inhibitory effects on TSE (13, 16) suggests that IRF3-responsive genes other than IFNs may be important for the inhibitory effect of IRF3 on prion infection. Of note, the protective effect of IRF3 against several viruses has been suggested to be largely independent of the production of type I-IFN, and probably responsible for the anti-viral actions of specific IRF3-responsive genes (10, 18, 21). Peritoneal macrophages from wild-type mice moderately induced TNF-α or IL-6 following exposure to PrPSc-mimicking PrP peptides (PrP106–126 or PrP118–135), whereas TLR4 signaling-mutant mice were impaired in their ability to produce these cytokines (36), supporting in part the hypothesis that some PRRs may sense PrPSc as a sort of PAMP. On the other hand, it should be noted that the MyD88-independent pathway activates both NF-κB and IRF3. Although the induction of proinflammatory cytokines essentially depends upon NF-κB, it was unclear whether the activation of IRF3 was induced by these PrP peptides. In fact, the hallmarks of IRF3 activation, such as phosphorylation, dimerization and cytoplasm-to-nucleus translocation of IRF3 in 22L-N2a58 cells were not detected (data not shown). Moreover, it was previously reported that IFNs were not detected in the serum, spleens, or brains of mice infected with scrapie (44). In addition, IFN-β mRNA does not increase in the brains of CJD patients (7) or mice infected with ME7 prion strain (14). Hence, these results argue against the notion that the IRF3-mediated signaling is activated by prion infection, but it remains to be determined whether transient and weak responses are evoked at an early phase in the infection. The question as to whether IRF3-mediated signaling directly suppresses the production of PrPSc or increases its degradation also remains open. Another explanation is that prion infection itself may have little effect on the pathway, but that the basal activity of IRF3 may have some degree of inhibitory effect on prion propagation. It has been reported that IRF3 can be activated not only by viruses but also by multiple activators such as cellular stress and DNA damage (24) (34). Accordingly, it is possible that constitutive activation of IRF3, albeit at a low level, occurs in the brain even in the absence of a pathogen. This notion is further supported
by the fact that constitutive, weak IFN-signaling in the absence of viral infection plays a role in modifying cellular responsiveness in the immune and other biological systems (38, 40). Accumulating evidence indicates that many viruses have evolved to evade the innate immune system, including IRF3-mediated signaling (15, 23). For instance, an active mutant of IRF3 has been reported to exert a markedly suppressive effect on cellular HIV-1 infection and administration of poly I:C potently inhibits HIV-1 replication in microglia through a pathway requiring IRF3. Nonetheless, HIV-1 itself does not activate IRF3 but rather decreases IRF3 protein in HIV-1 infected cells (12, 37). Likewise, prion infection might disturb the activation of IRF3, even though prion is considered to be largely composed of PrPSc. We are currently investigating this possibility. Furthermore, an analogy can be made between the role of IRF3 in prion infection and that of IL-10. The levels of IL-10 are not increased in the brains of scrapie-infected mice (14, 42), whereas IL-10 knockout mice are highly susceptible to the development of scrapie (41).

In conclusion, we have shown that IRF3, a key transcription factor of the MyD88-independent pathways, operates in the host defense machinery against prion infection. The findings provide new insight into understanding of the innate immunity to prion infection.

MATERIALS AND METHODS

Reagents and Antibodies

The anti-PrP polyclonal mouse antiserum (SS) has been described previously (5). M20 is an affinity purified goat polyclonal antibody recognizing the C-terminus of mouse PrP (Santa Cruz Biotechnology, Inc., CA, USA). Anti-mouse IRF3 (Santa Cruz Biotechnology) and anti-mouse phospho-IRF3 (Ser396) (Cell Signaling Technology, Japan) were rabbit polyclonal antibodies, and anti-mouse β-actin (Sigma Aldrich, St. Louis, MO, USA) was a mouse monoclonal antibody. Horseradish peroxidase (HRP)-conjugated anti-goat immunoglobulin G antibody (Santa Cruz Biotechnology), anti-mouse and anti-rabbit IgG antibodies (Amersham Pharmacia Biotech AB, Uppsala, Sweden) were used for Western blotting.

Cell cultures
The mouse neuroblastoma cell line N2a was purchased from the American Type Culture Collection (ATCC CCL131), and N2a58 cells overexpressing mouse PrP prepared from N2a were transfected with a plasmid carrying wild-type mouse prnp cDNA (PrP-a genotype, codons 108L and 189T) (27). Prion infected cells, 22L-N2a58, were produced as previously described (27). After limiting dilution, several PrP Sc-positive clones were isolated. The cell clones producing the highest level of PrP Sc were used for subsequent studies. The 22L-N2a58 cells stably expressed PrP Sc for over 50 passages. The cells were cultured in DMEM (Sigma) containing 10% heat-inactivated fetal bovine serum and penicillin-streptomycin (Invitrogen, Carlsbad, CA, USA), and split every 3 days at a 1:10 ratio. All cultured cells were maintained at 37 °C in 5% CO2 in the biohazard prevention area of the authors’ institution.

**Plasmid and siRNA**

The mammalian expression pUNO vector contains a strong and ubiquitous composite promoter designated EF1α-HTLV. In this experiment, we inserted mouse IRF3 cDNA into multiple cloning sites of the pUNO vector (Invivogen, San Diego, CA, USA). The HA-tagged mouse IRF3 cDNA was inserted into pcDNA3.1 vector (Invitrogen). The plasmids were introduced by Lipofectamine LTX (Invitrogen) in the prion-infected cells and incubated for 48 h. The small interfering RNAs (siRNAs) were purchased from QIAGEN, Hilden, Germany. Two specific siRNA-targeted sequences (product IDs: SI00210770 and SI00210784) were used for IRF3 (according to GenBank accession No: NM016849), 5'- ACA GGT GGT GAT GGT TGG CAA -3' and 5'- GAC CCT TAT GAC CCT CAT AAA -3'. For the negative control, a siRNA (product ID: 1022076) targeting 5'- AAT TCT CCG AAC GTG TCA CGT-3' was used. The siRNAs were introduced into cells using Fugene 6 (Roche Diagnostics, Mannheim, Germany) and incubated for 48 h.

**Western blotting**

Samples were lysed with Triton-DOC lysis buffer (50 mM Tris-HCl [pH 7.5] containing 150 mM NaCl, 0.5% Triton X-100, 0.5% sodium deoxycholate, 2 mM EDTA, and protease inhibitors (Nakarai Tesque, Inc., Japan), for 30 min at 4 °C. After 1 min of centrifugation at 5000×g, the supernatant was collected and its total protein concentration was measured using the BCA protein assay kit (Pierce, Rockford, IL). To
detect PrP\textsuperscript{Sc}, the protein concentration was adjusted to 10 mg/ml, and samples were
digested with 20 \( \mu \)g/ml of proteinase K (PK, Sigma) at 37 °C for 30 min, and boiled for
5 min with sodium dodecyl sulfate (SDS) loading buffer (50 mM Tris-HCl, pH 6.8,
containing 5% glycerol, 1.6% SDS, and 100 mM dithiothreitol) and subjected to
SDS–polyacrylamide gel electrophoresis. The proteins were transferred onto an
Immobilon-P membrane (Millipore, MA, USA) in transfer buffer containing 15%
methanol at 300 mA for 1 h, and the membrane was blocked with 5 % nonfat dry milk
in TBST (10 mM Tris-HCl [pH 7.8], 100 mM NaCl, 0.1% Tween 20) for 1 h at room
temperature and reacted with diluted primary antibodies. Immunoreactive bands were
visualized by HRP-conjugated secondary antibodies, using an enhanced
chemiluminescence system (Amersham). The detailed methods have previously been
described (4). To quantify the signals, we measured the intensity of each band using the
NIH image J software.

Establishment of stably IRF3-overexpressing cells and in vitro 22L scrapie
infection experiments

To establish cell lines stably expressing IRF3, pcDNA3.1 plasmid containing
HA-tagged IRF3 gene was transfected using Fugen 6 (Roche) into PrP\textsuperscript{C}-overexpressing
N2a cells (N2a 75 cells) and cultured for 48 h. After the cells were treated with 350
\( \mu \)g/mL hygromycin (HygroGold, Invivogen) in culture medium for 4 days, the
drug-resistant colonies were isolated. We used the HygroGold-selected N2a 75 cells
transfected with empty vector as a negative control. Then, the cells were infected with
22L scrapie strain (final concentration, 0.02 or 0.2% brain homogenate) in a 6-well
culture plate for 48 h, and subsequently passaged into a 75 cm\textsuperscript{2}-flask. Once confluent,
the sub-cultures were diluted 10-fold (27). After treatment with 40 \( \mu \)g/mL PK,
immunoblotting was done to detect PrP\textsuperscript{Sc}.

In vivo scrapie infection experiments

Four-week-old wild-type (+/+ ) and IRF3 knockout (−/−) male mice of the same
C57BL/6-derived genetic background were intraperitoneally (i.p.) inoculated with 100
\( \mu \)L of 10\textsuperscript{−3} dilution of brain homogenate (BH) from mice terminally infected with 22L,
Fukuoka-1 (FK-1) or mouse-adapted BSE (mBSE) strain (28). The IRF3−/− mice were
obtained from Dr. T. Taniguchi’s group (Tokyo University) (33). As a negative
(mock-infected) control, age- and strain-matched mice were inoculated i.p. with normal mouse BH. The spleens and brains of the mice were removed at 1, 2, 5, 8, 25 weeks post-infection (w.p.i.) and at the terminal stage of disease. Animals were cared for in accordance with the Guidelines for Animal Experimentation of Nagasaki University.

Histopathology and Immunohistochemical Staining

The spleen and brain tissues were fixed in 4% paraformaldehyde, and 5-μm paraffin sections prepared on PLL coat slides with microtome. To measure vacuolation in brain, the tissue sections were stained with hematoxylin and eosin (HE). In PrPSc staining, after deparaffinization and rehydration, the sections were pretreated by hydrated autoclaving at 121 °C for 15 min in 1 or 1.2 mM hydrochloric acid (17), followed by immersion in 90% formic acid for 5 min (25) to enhance PrP visualization, according to the protocol described by Brown et al (9). Endogenous peroxidase activity was inhibited with 0.3% hydrogen peroxidase in methanol for 30 min. Nonspecific binding sites of the primary antibody SAF32 (SPI-BIO, Montigny le Bretonneux, France) was blocked by preincubation in normal rabbit serum at 1:20 (Dako, Glostrup, Denmark) for 30 min, and then optimally titrated and diluted to 1:5000 and 1:500 (26, 32). The negative control sections were incubated with normal mouse IgG1 and IgG2b serum (DAKO) and then exposed to the primary antibodies overnight at room temperature. For determining follicular dendritic cell population in the spleen, we used anti-FDC antibody CNA.42 (DAKO) (31) and normal mouse IgM serum (DAKO) as a negative control for primary antibodies, and Histofine mouse stain kit (Nichirei biosciences, Inc., Jpn) for the secondary antibody. In glial staining, primary antibodies of anti-GFAP (glial fibrillary acidic protein) (DAKO) for the detection of activated astrocyte, and anti-Iba-1 (WAKO, Japan) for activated microglia were used. The secondary antibodies were Envision-mouse or rabbit HRP (DAKO) used at 1:200 for 1 h. Finally, the samples were stained with 0.025% 3,3’ diaminobenzidine (DAB, Dojindo Lab, Japan) to visualize the reaction product, and counterstained with hematoxylin. The pattern of vacuolation, PrPSc deposits and gliosis were examined in 5 areas, namely the cortex, hippocampus, thalamus, cerebellum, and Pons. In semi-quantitative evaluation of spongiosis and gliosis, lesion severity of vacuolation as spongiform degeneration was scored on a 0–5 scale (non-detectable, a few, mild, moderate, severe and status spongiosus). PrPSc deposit was scored on a 0–4 scale (non-detectable, a few, mild, moderate and severe).
Microgliosis and astrogliosis were scored on a 0–3 scale (non-detectable, mild, moderate and severe) and the values for each brain region were averaged.

**Statistical analysis**

The Student’s t-test and Mann-Whitney U-test were used for comparison between two groups, and the one-way ANOVA followed by the Tukey-Kramer test, for multiple comparisons. The log rank test was used to analyze mortality of prion-infected mice. The correlation between parameters was determined by simple regression analysis and Pearson’s correlation coefficient test. Statistical analysis of all data was performed using the Statcel 2 on Excel and GraphPad Prism software.

**Acknowledgments**

We thank Dr. Tadatsugu Taniguchi for the gift of IRF3 knockout mice; and Drs. Hitoki Yamanaka, Takehiro Matsubara, Kazunori Sano, for helpful discussions and critical assessment of the manuscript; and Mari Kudo, Ayumi Yamakawa and Atsuko Matsuo, for technical assistance. This work was supported in part by the global COE Program (F12); a Grant-in-Aid for Young Scientists (B) (No. 22790955) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; a grant for BSE research, and a grant-in-aid of the Research Committee of Prion disease and Slow Virus Infection, from the Ministry of Health, Labor and Welfare of Japan.
FIGURE LEGENDS

**Fig. 1.** Acceleration of prion pathogenesis in IRF3-/- mice.

(A) Survival curves in wild-type (+/+), n=9, circle) and IRF3 knockout (-/-) (n=5, triangle) mice after i.p. inoculation of 10^3 dilution of 22L-BH are plotted. The difference between the two groups is statistically significant (p < 0.05, Logrank test).

(B) Accumulation of PrP^Sc in the brain tissues from wild-type or IRF3-/- mice was analyzed by Western blotting. Molecular mass markers are indicated in kilodaltons (kDa) on the left side of each panel. (C) PrP^Sc deposits were similarly stained in cortex area of wild-type (+/+) and IRF3 knockout (-/-) mice at the terminal stages (upper panels). There were no significant differences between wild-type and IRF3-/- mice in the staining levels of PrP^Sc in the five brain regions: cortex (Cx), hippocampus (Hi), thalamus (TH), cerebellum (CE) and Pons (Po) (lower graph). Scale-bars equal 25 µm. All data are representative of at least three mice.

**Fig. 2.** Comparison of spongiform change between wild-type and IRF3-/- mice after 22L prion infection.

(A) Sections of the cortex (Cx) and cerebellum (CE) stained with hematoxylin and eosin from wild-type (+/+), and IRF3 knockout (-/-) mice at 0, 25 w.p.i. and terminal stages after i.p. inoculation of 10^3 dilution of 22L-BH are shown. Scale-bars equal 25 µm. (B) Vacuolation scores in the same five brain regions as Fig. 1B were compared between the prion-inoculated wild-type (circle) and IRF3-/- (triangle) mice at 25 w.p.i. or the terminal stages. Statistical significance was determined using a two-tailed Student’s t-test. ***p < 0.001, *p < 0.05 compared with wild-type mice. Error bars indicate SEM. These results are representative of at least three mice.

**Fig. 3.** Histopathological examination of gliosis in the brains of prion-infected mice.

(A) Immunohistochemical staining for Iba-1 with hematoxylin counterstaining was performed. The sections of cortex from wild-type (+/+), and IRF3 knockout (-/-) mice at 0, 25 w.p.i. and terminal stages are shown (upper panels). Lesion profiles of microgliosis in the same five brain regions as Fig. 1B were compared between the prion-inoculated wild-type (circle) and IRF3-/- (triangle) mice at the terminal stages (lower graph). No significant differences were observed between the two groups at 25
w.p.i. or at the terminal stage. (B) Immunostaining for GFAP with hematoxylin
counterstaining (upper panels), and lesion profiles of astrogliosis (lower graph).
Significant differences were observed between the two groups in Cx and CE regions at
25 w.p.i., but not at the terminal stage. Statistical significance was determined using a
two-tailed Student’s t-test. **p < 0.01, *p < 0.05 compared with wild-type mice. Error
bars indicate SEM. Scale-bars equal 25 µm. All results are representative of at least
three mice.

**Fig. 4.** Early detection of PrPSc deposits in the spleen of prion-inoculated IRF3-/- mice.
(A) Accumulation of PrPSc in the spleens was analyzed by immunohistochemistry
(hydrophobic autoclaving method) at 5, 8 w.p.i. and terminal stages after i.p. inoculation
of 10^-3 dilution of 22L-BH. Scale-bars equal 25 µm. (B) The sections of spleen from
wild-type (+/+) and IRF3 knockout (-/-) 5-week-old mice were stained with anti-FDC
antibody (CNA.42). IgM is a negative control for the primary antibody. Scale-bars equal
20 µm.

**Fig. 5.** Inhibitory effect of IRF3 on PrPSc replication in cell culture.
(A) Plasmids (pUNO) containing IRF3 gene were transiently transfected into
22L-N2a58 cells and incubated for 48 h. The panels on the left show PK-treated PrP as
PrPSc (upper), total IRF3 (middle) and phosphorylated IRF3 (lower) in the cells. Mock,
plasmids without IRF3 gene. The numbers above the panels represent the amount (µg)
of the plasmids used for transfection. C, untransfected cells for negative control. The
levels of PrPSc band intensity in the cells transfected with 4µg of the plasmids with or
without IRF3 gene are expressed as a percentage compared with the control (right
graph). The results in the graph are the mean ± SD of three independent experiments.
Asterisks indicate statistically significant differences (*, p < 0.05). (B) The siRNAs of
IRF3 were transfected into 22L-N2a58 cells and incubated for 48 h. The cells were
subjected to Western blotting to detect PrPSc, β-actin and IRF3. The band intensities of
PrPSc (middle graph) or IRF3/β-actin ratio (right graph) were quantified. Asterisks
indicate statistically significant differences (*, p < 0.05 and **, p < 0.01). The data are
representative of three independent experiments. (C) The effect of overexpression of
HA-tagged IRF3 on new prion infection was analyzed using stable IRF3-overexpressing
clones, A4, C1 and H3. A hygromycin-resistant but IRF3-negative clones, A1 and E1,
were used as the negative control. The top four panels show protein expression of PrP\(^C\),
total IRF3, HA-tagged IRF3 and \(\beta\)-actin prior to infection in each clone. After
incubation with 0.02 % of 22L-BH for 48 h and then 5 passages, PrP\(^{Sc}\) levels in the
clones were determined by Western blotting. The scatter diagram is indicative of a
correlative relationship between the PrP\(^{Sc}\)/PrP\(^C\) ratio and the IRF3 expression ratio
(right graph). A statistically significant (\(P < 0.001\)) correlation (\(r = -0.8\)) was observed
between the PrP\(^{Sc}\) and the IRF3/\(\beta\)-actin ratio. The coefficient of determination is shown
as R\(^2\) values. All results are representative of at least three independent experiments,
and each experiment was performed in triplicate.

REFERENCES

Yamaguchi, D. Yoshikawa, J. Yoon, K. Watanabe, N. Kobayashi, S.
biochemical characteristics of prion strains conserved in persistently
2006. Prion strain-dependent differences in conversion of mutant
Identification of a member of the interferon regulatory factor family
that binds to the interferon-stimulated response element and
activates expression of interferon-induced genes. Proceedings of the
National Academy of Sciences of the United States of America
92:11657-11661.


Fig. 1

A

![Graph showing survival (%) against post-inoculation (days) with two lines representing IRF3+/+ and IRF3-/-](image)

B

<table>
<thead>
<tr>
<th></th>
<th>Mock (+/+)</th>
<th>Terminal (+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrP (PK-)</td>
<td><img src="image" alt="Image" /></td>
<td><img src="image" alt="Image" /></td>
</tr>
<tr>
<td>β-actin</td>
<td><img src="image" alt="Image" /></td>
<td><img src="image" alt="Image" /></td>
</tr>
</tbody>
</table>

C

-/+ (0wpi) vs. -/- (0wpi) vs. +/+ (40wpi) vs. -/- (32wpi)

Lesion severity (Arbitrary units) vs. Brain regions (Cx, Hi, TH, CE, Po)
Fig. 2

Lesion severity (Arbitrary units)

Brain regions: Cx, Hi, TH, CE, Po

25wpi

IRF3+/+  IRF3-/-

<table>
<thead>
<tr>
<th>Time</th>
<th>Cx</th>
<th>Hi</th>
<th>TH</th>
<th>CE</th>
<th>Po</th>
</tr>
</thead>
<tbody>
<tr>
<td>0wpi</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
</tr>
<tr>
<td>25wpi</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
</tr>
<tr>
<td>40wpi</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
</tr>
</tbody>
</table>

Terminal

<table>
<thead>
<tr>
<th>Time</th>
<th>Cx</th>
<th>Hi</th>
<th>TH</th>
<th>CE</th>
<th>Po</th>
</tr>
</thead>
<tbody>
<tr>
<td>0wpi</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
</tr>
<tr>
<td>25wpi</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
</tr>
<tr>
<td>40wpi</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
<td>-/-</td>
<td>+/+</td>
</tr>
</tbody>
</table>

Lesion severity (Arbitrary units)
Fig. 3

IRF3-/-
IRF3+/+

Brain regions

Iba-1

GFAP

Lesion severity (Arbitrary units)
Fig. 4

A

Mock

5wpi

8wpi

Term

B

IgM

CNA.42 (FDC)
Table 1. Survival periods of prion-infected wild-type (+/+) and IRF3 knockout (-/-) mice.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Survival periods (days)$^a$</th>
<th>+/- (n)$^b$</th>
<th>-/- (n)$^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>22L</td>
<td>281 ± 15 (9)</td>
<td>257 ± 8 (5) ***</td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>380 ± 33 (7)</td>
<td>335 ± 37 (7) *</td>
<td></td>
</tr>
<tr>
<td>FK-1</td>
<td>321 ± 24 (4)</td>
<td>251 ± 31 (5) **</td>
<td></td>
</tr>
</tbody>
</table>

$^a$ Survival periods were shown as “Average ± SD (days)”.

$^b$ (n), number of mice.

Animals were intraperitoneally administrated with $10^{-3}$ dilution of brain homogenate from prion-infected terminal mice. *p < 0.05, **p < 0.01, ***p < 0.001 by student’s t-test.
Table 2. PrP<sup>Sc</sup> positive rate in the spleens in mice with i.p. inoculation of 22L at the indicated time points.

<table>
<thead>
<tr>
<th>Weeks post inoculation</th>
<th>PrP&lt;sup&gt;Sc&lt;/sup&gt; positive/total number of mice&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+/+</td>
</tr>
<tr>
<td>1</td>
<td>0/5</td>
</tr>
<tr>
<td>2</td>
<td>0/5</td>
</tr>
<tr>
<td>5</td>
<td>0/5</td>
</tr>
<tr>
<td>8</td>
<td>0/5</td>
</tr>
<tr>
<td>Terminal</td>
<td>1/1</td>
</tr>
</tbody>
</table>

<sup>a</sup>The presence of PrP<sup>Sc</sup> accumulation in the spleen of prion-infected mice was determined by immunohistochemical staining.