<table>
<thead>
<tr>
<th>Title</th>
<th>Duffy Phenotype and Plasmodium vivax infections in Humans and Apes, Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Culleton, Richard Leighton; Ferreira, Pedro Eduardo</td>
</tr>
<tr>
<td>Citation</td>
<td>Emerging Infectious Diseases, 18(10), pp.1704-1705; 2012</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/30579</td>
</tr>
</tbody>
</table>

All materials published in Emerging Infectious Diseases are in the public domain and can be used without permission.
would be informative, in any case, to determine how the regions that P. vivax-positive travelers visit during their stay in Africa correspond with the ranges of chimpanzees and gorillas.

If African great apes do, indeed, constitute a zoonotic reservoir of P. vivax parasites, what are the
repercussions for human health? Given that 95%–99% of humans possibly exposed to such a reservoir are Duffy negative, and therefore resistant to the parasite, these would appear to be slight. However, as humans encroach more frequently into ape habitats, the chances of humans encountering the parasite will increase. In the short term, the risks are probably limited to Duffy-positive persons who enter areas where apes are present, such as tourists and migrant workers.

Richard Leighton Culleton and Pedro Eduardo Ferreira

Author affiliations: Nagasaki University, Nagasaki, Japan (R.L. Culleton, P.E. Ferreira); University of Algarve, Faro, Portugal (P.E. Ferreira); and Karolinska Institutet, Stockholm, Sweden (P.E. Ferreira)

DOI: http://dx.doi.org/10.3201/eid1810.120120

References

Address for correspondence: Richard Leighton Culleton, Malaria Unit, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8532, Japan; email: richard@nagasaki-u.ac.jp