<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>捕鯨船団に関する研究: 乗組員の年令と出身地</td>
</tr>
<tr>
<td>著者</td>
<td>真野 慎弘、高山 久明、柴田 惠司</td>
</tr>
<tr>
<td>発行機関</td>
<td>長崎大学水産学部研究報告</td>
</tr>
<tr>
<td>発行年月</td>
<td>1977年2月</td>
</tr>
<tr>
<td>言語</td>
<td>日本語</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/30705</td>
</tr>
</tbody>
</table>
Studies on Whaling Fleet-III
Age and residence of crew

Suehiro Mano, Hisaaki Takayama, and Keishi Shibata

Some statistical considerations were made on the age and residence of a total of 19,628 crew members of the whaling fleets, Kyokuyo Co., who had been engaged in Antarctic operations from 1956 to 1973.

The mean age of the crew annually increased as:

\[\text{Mean age} = 0.7958T + 20.7794 \]

where, \(T = \text{A.D. -1955} \).

The patterns of age distribution for factory workers annually changed, as the pattern of poisson-distribution varied with the probability, \(p \), for example, the pattern of 1963 well agreed to that of \(p=0.15 \), that of 1966 to \(p=0.3 \) and then that of 1970 may be approximated to the normal distribution of \(p=0.5 \).

The remaining rate of workers \(X \) years after their engagement was roughly estimated as \(1/X \).

The most part of workers were from Tohoku region and the prefectures of their homes in the order of percentage were Miyagi, 31\%, Aomori, 16\%, Nagasaki, 13\%, Kochi, 12\% and Hokkaido, 10\%. And also the residences of the crew were similar to that of factory workers.
Table 1. Crew's mean ages on whaling fleets. F: factory ship, C: catcher boat

<table>
<thead>
<tr>
<th>Year</th>
<th>Ship</th>
<th>Total</th>
<th>Worker</th>
<th>Crew</th>
<th>Officer</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kind</td>
<td>No.</td>
<td>Mean</td>
<td>No.</td>
<td>Mean</td>
<td>No.</td>
</tr>
<tr>
<td>1956</td>
<td>F</td>
<td>3</td>
<td>946</td>
<td>27.924</td>
<td>725</td>
<td>27.383</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>12</td>
<td>268</td>
<td>29.436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>F</td>
<td>3</td>
<td>942</td>
<td>705</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>12</td>
<td>277</td>
<td></td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>1958</td>
<td>F</td>
<td>3</td>
<td>885</td>
<td>28.077</td>
<td>649</td>
<td>27.197</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>12</td>
<td>264</td>
<td></td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>1959</td>
<td>F</td>
<td>4</td>
<td>1,018</td>
<td>726</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>12</td>
<td>265</td>
<td></td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>1960</td>
<td>F</td>
<td>6</td>
<td>1,769</td>
<td>26.634</td>
<td>1,315</td>
<td>25.518</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>23</td>
<td>502</td>
<td></td>
<td></td>
<td>307</td>
</tr>
<tr>
<td>1961</td>
<td>F</td>
<td>6</td>
<td>1,726</td>
<td>27.027</td>
<td>1,267</td>
<td>25.773</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>24</td>
<td>519</td>
<td></td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>1962</td>
<td>F</td>
<td>6</td>
<td>1,693</td>
<td>27.256</td>
<td>1,249</td>
<td>26.020</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>23</td>
<td>501</td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>1963</td>
<td>F</td>
<td>6</td>
<td>1,664</td>
<td>27.748</td>
<td>1,223</td>
<td>26.477</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>22</td>
<td>480</td>
<td></td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>1964</td>
<td>F</td>
<td>6</td>
<td>1,620</td>
<td>28.274</td>
<td>1,194</td>
<td>27.044</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>21</td>
<td>447</td>
<td></td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>1965</td>
<td>F</td>
<td>5</td>
<td>1,092</td>
<td>30.379</td>
<td>762</td>
<td>29.333</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>12</td>
<td>265</td>
<td>31.430</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>1966</td>
<td>F</td>
<td>5</td>
<td>1,050</td>
<td>31.270</td>
<td>717</td>
<td>30.318</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>12</td>
<td>261</td>
<td>32.356</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>1967</td>
<td>F</td>
<td>5</td>
<td>1,062</td>
<td>31.612</td>
<td>729</td>
<td>30.236</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>11</td>
<td>243</td>
<td>32.847</td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>1968</td>
<td>F</td>
<td>4</td>
<td>807</td>
<td>32.329</td>
<td>676</td>
<td>31.432</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>11</td>
<td>243</td>
<td>33.695</td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>1969</td>
<td>F</td>
<td>3</td>
<td>872</td>
<td>32.858</td>
<td>656</td>
<td>32.043</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>221</td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>1970</td>
<td>F</td>
<td>3</td>
<td>857</td>
<td>32.880</td>
<td>655</td>
<td>32.046</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>219</td>
<td>34.703</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>1971</td>
<td>F</td>
<td>2</td>
<td>770</td>
<td>33.040</td>
<td>599</td>
<td>32.322</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9</td>
<td>195</td>
<td></td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>1972</td>
<td>F</td>
<td>2</td>
<td>672</td>
<td>35.167</td>
<td>506</td>
<td>34.899</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9</td>
<td>195</td>
<td>36.507</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>1973</td>
<td>F</td>
<td>2</td>
<td>630</td>
<td>36.622</td>
<td>463</td>
<td>36.501</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>8</td>
<td>173</td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Total</td>
<td>F</td>
<td>74</td>
<td>20,075</td>
<td>(29.674)</td>
<td>14,816</td>
<td>(28.674)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>253</td>
<td>5,538</td>
<td>(32.793)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean ages in total are given only on available crew lists.

数 81,061 トン、事業員 1,315 名をピークとして世界捕鯨制限戦が 1964 年の 8,000 艦（B. W. U.*）から一挙に 1965 年には 4,500 艦（B. W. U.）に削減され、その後は年々減少し、1972 年には鯨捕獲規制の実施に際してその傾向を加速され、1973年には生産トン数を 22,810 トンとなり、1976年には鯨捕获揚（株）の設立まで縮小された。

* B. W. U. (Blue Whale Unit): シロナガスクジラ換算船数であり、マクガスクジラ 2 頭、イワシクジラ 6 頭、ザトウクジラ 2.5 頭をシロナガスクジラ 1 頭に換算したものである。
図中に黒点で示したが、明らかに年々高令化している。これらの諸点を通る年令Yの時間T（昭和で示した値から30を引いたもの）に対する一次回帰式は、$Y = 0.7956T + 29.7794$ である。また通算平均年令は28.86±7.87であった。

1966年以降、K社の年次別南極船団を職種別平均年令と共に大型船、捕鯨船に分けてTable 1に示す。ただし、1968年の喜山丸（N社所属）では、K社所属である事業員のみを取扱った。

年令の経年変化
1960年から1973年における年次別乗組員年令を、大型船および捕鯨船の事業員、船員および乗員の3職種に分け、各職種ごとに前出のTに対する一次回帰を求める。年次別平均年令とともにFig. 2に示した。この図において縦軸は平均年令、横軸は年次を示す。また大型船に関する回帰直線は実線、捕鯨船（1965〜1973年）は点線で示している。これらの回帰直線は両船とも線形の傾向を示している。なお、年次別職種別の平均年令および人員数をTable 1に示す。

大型船
大型船における平均年令の経年変化を職種別に同様の方法でFig. 3〜5にそれぞれ職種別にして示した。

i）職員
Fig. 3において、上より順に船長、機関長および通信長の年次別平均年令（通算平均年令49.928±7.463）一等航海士、機関士および次席機関士（37.436±4.379）、二等航海士、機関士（33.681±5.696）、および三等航海士、機関士（28.169±3.949）であり、全てデータを集積分類して計算した年令の時間T年的回帰直線を示す。これらのうち最も上部の船長級における年令と年次Tの相関は有意である。また、最も下の三等航海士の場合の相関係数の有意水準は5%であったが、他は5%を越えていた。したがって、これらの一次回帰式は船長級を除き有意であると考える。

この図に示すとよく、いずれの職種でも年とともに年令が高令化する傾向を示している。また回帰係数 A の逆数が年次1才を増加させる所要期間を与えるとすれば、一等機関士および二等機関士、それぞれ約2.1年および約3.2年ごとに1才だけ高令化しているとも言える。

ii）船員
職員（通算平均年令49.124±6.452）、甲板手（36,
Fig. 2. Mean age for 3 classes, i.e., officers, crew and workers from 1960 to 1973. Solid line represent factory ships and dotted line catcher boats. Symbols for each regression lines are: O: officers, C: crew, W: workers, T: total of 3 classes.

Fig. 3. Mean age of officers on factory ships. 1: Capt, C/E, C/W, 2: C/O, 1/E, 1/W, 3: 2/O, 2/E, 4: 3/O, 3/E.

692±6.604)，操機手 (37.793±5.573)，調理手 (36.349±6.007)，甲板員および司厨員 (25.292±4.269)，機関員 (25.276±3.909) に分けて，年ごとの平均年令を同様の方法で Fig. 4 に示す。定年という年令上限を有する職業では，有意的な経年変化はなかった。
また，調理手においても有意的な経年変化はみられなかったが，これは入社後の定着率が低く，人員が常時入れ替わっていることを示している。以上の他はいずれもきわめて高く (α ≤ 0.05%)，T 対する相関 (0.169～0.325) を示している。前と同様な方法で考えると年令が1才増えるのに必要な経年数は，それぞれ甲板手 3.7，甲板員および司厨員 2.6，ならびに機関員約 4.0年であった。甲板員，機関員はほぼ同様の変化を示しているが，両者の違いは機関員に1971～1973年に低年令者の採用があったためと考えられる。
部員全体の年令の経年数 T 対する相関係数は 0.27と0.05%を越える有意水準をもつ，1.6年に1才増加する傾向を示している。これは職員全体の 2.8年に比べて高令化の傾向が著しく高い。

iii）事業員

事業員とは工船における漁獲物の加工処理，冷凍，製油等の工場生産および製品の保管管理を担当し，その作業は船長ではなく事業部の指導系統に属する。また，事業員は社内制度上，一概，常備の三種に区別され，一概とは未経験者を含む通常の臨時雇用に近いもので，経験年数 7年に達すると常備雇用者となる。常備に内から選抜されて船長・員長級の常備となる。本報では，以上の三種の他に常備に含まれている員長・副員長（士官待遇）を区別して考察を行なった。

この4種に大別したものを前述の要領で年次別平均年令を Fig. 5 に示す。また一般的に含まれる新人（未経験者）の平均年令も参考までに記入していた。

員長級と班長級（常備）の回帰式線が A = 0.65，0.73と傾斜が大きく，ほとんど互いに平行であることから，両方とも有効率が高く，長い期間にわたってほとんど同人物でこれらの級が構成されていたためと思われる。また，員長級の傾斜が班長級に比べて小さいのは，この級に定年という上限を有するためと考える。7年以上の者が常備として区
別する制度は1967年から始まっているので、この職階についてはこれ以後の資料のみについて計算された。職報が員長級、班長級に比べて傾斜が小さいのは、この級から常備への昇任や以下の職階からの流れが常に行なわれているためと考える。一般についても1964～1966年にかけての増加傾向が1967年急激に減少したのは、この級から前歴の職報へ移行したものと考えられる。しかし、この部分を除くとかなり安定した様相を示している。この級には下に黒丸で示した新人（19.5～21才）および上の級への移行と同時に定着率がかなり低く相当新陳代謝があるためと思われる。

員長級および班長級は相関係数0.463～0.497ときわめて高いTに対する相関を示している。職報については相関係数の有意水準は5％であり、一般では有意的な経年変化はみられなかった。

捕鰻船
すでに述べたごとく、捕鰻船の場合も大型船同様の方法で1960～1972年の内1969年と1971年を除く6ヶ年、延65隻の乗組員について職階ごとの平均年令と経年変化をFig. 6および7に示す。
i）職員
 Fig. 6において、上より順に年次別平均年令は砲手（演算平均41.065±4.745）、船長級（38.318±5.845）、一航機級（34.318±5.766）、二航機級（31.662±6.328）、騷探士（31.662±6.328）で、上限の砲手は回帰直線の傾斜がゆるやかなのは、特殊技術者である砲手になるまでかなりの経験年数を要し、他の職階に比べて在職寿命が短かいことを意味している。また、有意的な経年変化はなかった。その他の職員については、二航、二機の相関係数0.169を除きTに対する相関係数は0.319～0.515と有意水準0.05%を越えるきわめて高い相関を示している。したがって船長級、一航機級および騷探士はいずれも大体同じような割合で、年々高令化しつつある。二航機級においては、1967、1968の両年に新卒者の採用を行なったことによると考える。

ii）部員
捕鰻船の部員（演算平均年令31.98）については各職階ごとに上より職員（39.092±4.463）操機手（34.807±3.228）、甲板手（33.609±
3,473) 機関員 (28,000±2,899), 甲板員および司舵員 (24,663±4,532), の年次別平均年令およびそれぞれに対する回帰直線を合わせて Fig. 7 に示す。

この図によれば、最も下の甲板員および司舵員は年令と T との間に相関はなかったが、他の職階では相関係数は 0.307～0.503 であり 0.05 異を越える高い相関を示している。上限の職員は回帰直線の傾斜が大きく、次いで甲板手操機手も同様な傾向を示し、これらの級の定着率の高いことを示している。また、甲板員・司舵員がこの図に示す様に T に無関係の傾向を示すこととは、この級において著しい新陳代謝が行われていることを示しているが、この理由は次の様に考えた。すなわち、捕鯨船の乗組員の職務内容は大型船の甲板員見習い性格のもので、航海関係の維持に加え、操業中は東京 fault による浮遊船の準備、取込みなどを定期任務とし、経験年数 3 個で甲板員または機関員に移行する。したがって、若年者の多い、勤務内容も激動なので定着率をきわめて低く、このためこの図の下に示される司舵員を含んだ甲板員の年令は時間 T の間に有意的な相関は認められず、全体として定着率が低く、平均年令も機関員に比べて低結果を示しているものと考える。

年令組成の経年変動

大型船の乗組員（船の年令組成を 16 から 3 才おきに 55 才までの出現ひん度分布として年次別に Fig. 8 に示した。なお、5 才以下とし、55 才以上は 55 才とした。この図において縦軸は出現ひん度、横軸は年令階級であり、左図は乗組員、右図は機関員のものを示す。中央の数字はそれぞれの年次を示している。これら図の右図者との両者とも 1964 年まではピーク値が年令の低い方に偏った典型的なポアソン分布を示しているが、それ以後はピーク値が年々年令の高い方に移行してゆく傾向が明らかに認められる。すなわち P = a/n とすれば 1960 年前後では P = 0.15 (Skewness; β₁ = 1.475, Kurtosis; β₂ = 5.598) のポアソン形となり、1966 年には P = 0.3, (β₁ = 0.563, β₂ = 2.391) と変わり、1970 年には P = 0.5, (β₁ = 0.106, β₂ = 2.372) の正規分布に近い形となる。さらに 1973 年には P = 0.6 (β₁ = 0.712, β₂ = 2.643) のピーク値が中央から年令が高い方に偏った形となっている。この様な傾向は、この間における事業の縮小に伴って平均年令が高令化し、新たに採用が定量的に行われなかったこと、および乗組員の定着率が極めて高いためを示していると考える。

乗組員の経験年数別年令組成

1963年度における乗組員の経験年数別年令組成を Fig. 9 に示す。この図において縦軸は積算出願度数、横軸は 1 才ごとの年令組を示している。この年度では乗組員の制度的に一般（経験年数 6 年以下）、統率（7 年以上）、常備（三等級）、員員級の 4 つに分けられるが、この図の場合、一般の区分をさらに新人（経験年数 0 年）および経験年数 1 年ごとにこの図の右上に示すように再分割してある。このうち細い横線で示した経験年数 3 年目が採用された年は 2 船団に
Fig. 8. Annual changes of distribution patterns in age class of factory workers and crew on factory ships.
拡大された年にあたり，人員数が他の年度と比べて著しく多い。

これらの積算出数分布の型を経験年数ごとに，前述の歪度，尖度によって比較を行った。

無印で示した新人の年令組成の\(\beta_1 = 1.070, \beta_2 = 4.028 \)であり，経験7年以上までの積算年令組成の形
は\(\beta_1 = 1.113, \beta_2 = 4.958 \)となり前者と相似の傾向を示す。また，班長級までのものは\(\beta_1 = 1.105, \beta_2 = 4.372 \)全体で，\(\beta_1 = 1.137, \beta_2 = 4.417 \)とそれれも相似の傾向を示している。この傾向は，経験6年以上になると，定年に達したものを除いて残存率が急激に高いことを示している。ただし，経験1年から5年までのそれぞれの積算年令組成はこのような傾向を示さなかった。また，前年度における新人，すなわちこの年度の経験1年の中には前年度参加していない者も含

まれているが，今，仮りに前年度の新人がすべて経験1年に移行したと仮定すれば，残存率は52%である。

1960年に約900人ことが採用されたが，これはFig. 8 の3年級に当たる，その残存率は23%である。以上から採用後3年目の残存率は1/xで近似される。

年令と職務
事業員・船員および職員の各職階と年令の関係を相関係数Rおよび一次回帰係数A，BとしてTable 2～4に示す。それぞれ該当する職階における職務，たとえば，甲板部員の場合，甲板長，甲板手および甲板の三つの職階にそれぞれ3，2，1とおき，これに対

する年令の相関を求めた。また，職階間の年令格差を示す指標としてAの逆数を併記しておいた。これらの

表において職階と年令の相関はいずれの職階間の年令

格差を示す指標としてAの逆数を併記しておいた。こ
表2. 階級と齢の関係を利用した回帰係数と相関係数.

<table>
<thead>
<tr>
<th>Year</th>
<th>R</th>
<th>A</th>
<th>B</th>
<th>1/A</th>
<th>No. of rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>-0.24111</td>
<td>-0.0085</td>
<td>4.2106</td>
<td>116</td>
<td>2</td>
</tr>
<tr>
<td>1958</td>
<td>-0.31845</td>
<td>-0.0161</td>
<td>4.3940</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>1960</td>
<td>-0.52754</td>
<td>-0.0513</td>
<td>5.0896</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>1961</td>
<td>-0.55619</td>
<td>-0.0561</td>
<td>5.2313</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>1962</td>
<td>-0.53233</td>
<td>-0.0535</td>
<td>5.1747</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>1963</td>
<td>-0.57182</td>
<td>-0.0571</td>
<td>5.2932</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>1964</td>
<td>-0.52205</td>
<td>-0.0495</td>
<td>5.1188</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>1965</td>
<td>-0.55051</td>
<td>-0.0592</td>
<td>5.4245</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>1966</td>
<td>-0.55046</td>
<td>-0.0601</td>
<td>5.4988</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>1967</td>
<td>-0.71788</td>
<td>-0.0722</td>
<td>5.6149</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>1968</td>
<td>-0.71592</td>
<td>-0.0701</td>
<td>5.5686</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>1969</td>
<td>-0.71037</td>
<td>-0.0662</td>
<td>5.3971</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>1970</td>
<td>-0.74235</td>
<td>-0.0649</td>
<td>5.3126</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>1971</td>
<td>-0.78555</td>
<td>-0.0634</td>
<td>5.2393</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>1972</td>
<td>-0.75980</td>
<td>-0.0624</td>
<td>5.1960</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>1973</td>
<td>-0.70961</td>
<td>-0.0654</td>
<td>4.9904</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3. Correlation and regression coefficients between rank and age of crew (number of ranks =3).

<table>
<thead>
<tr>
<th>Year</th>
<th>Factory ship</th>
<th>Catcher boat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>A</td>
</tr>
<tr>
<td>1956</td>
<td>-0.775</td>
<td>-0.052</td>
</tr>
<tr>
<td>1958</td>
<td>-0.711</td>
<td>-0.046</td>
</tr>
<tr>
<td>1960</td>
<td>-0.798</td>
<td>-0.053</td>
</tr>
<tr>
<td>1961</td>
<td>-0.831</td>
<td>-0.056</td>
</tr>
<tr>
<td>1962</td>
<td>-0.819</td>
<td>-0.055</td>
</tr>
<tr>
<td>1963</td>
<td>-0.806</td>
<td>-0.059</td>
</tr>
<tr>
<td>1964</td>
<td>-0.816</td>
<td>-0.059</td>
</tr>
<tr>
<td>1965</td>
<td>-0.830</td>
<td>-0.060</td>
</tr>
<tr>
<td>1966</td>
<td>-0.822</td>
<td>-0.063</td>
</tr>
<tr>
<td>1967</td>
<td>-0.775</td>
<td>-0.056</td>
</tr>
<tr>
<td>1968</td>
<td>-0.816</td>
<td>-0.060</td>
</tr>
<tr>
<td>1969</td>
<td>-0.799</td>
<td>-0.059</td>
</tr>
<tr>
<td>1970</td>
<td>-0.805</td>
<td>-0.057</td>
</tr>
<tr>
<td>1971</td>
<td>-0.743</td>
<td>-0.045</td>
</tr>
<tr>
<td>1972</td>
<td>-0.818</td>
<td>-0.047</td>
</tr>
<tr>
<td>1973</td>
<td>-0.722</td>
<td>-0.042</td>
</tr>
</tbody>
</table>
Table 4. Correlation and regression coefficients between rank and age of officers (number of ranks= 4).

<table>
<thead>
<tr>
<th>Year</th>
<th>Factory ships</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Catcher boats</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>A</td>
<td>B</td>
<td>1/A</td>
<td></td>
<td>R</td>
<td>A</td>
<td>B</td>
<td>1/A</td>
</tr>
<tr>
<td>1956</td>
<td>-0.775</td>
<td>-0.130</td>
<td>7.114</td>
<td>8</td>
<td></td>
<td>-0.517</td>
<td>-0.053</td>
<td>3.552</td>
<td>19</td>
</tr>
<tr>
<td>1958</td>
<td>-0.621</td>
<td>-0.103</td>
<td>6.462</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>-0.767</td>
<td>-0.119</td>
<td>6.994</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>-0.788</td>
<td>-0.115</td>
<td>6.903</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>-0.793</td>
<td>-0.114</td>
<td>6.897</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>-0.805</td>
<td>-0.122</td>
<td>7.234</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>-0.796</td>
<td>-0.121</td>
<td>7.065</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>-0.691</td>
<td>-0.109</td>
<td>6.743</td>
<td>9</td>
<td></td>
<td>-0.331</td>
<td>-0.050</td>
<td>3.531</td>
<td>20</td>
</tr>
<tr>
<td>1966</td>
<td>-0.744</td>
<td>-0.106</td>
<td>6.948</td>
<td>9</td>
<td></td>
<td>-0.454</td>
<td>-0.057</td>
<td>3.852</td>
<td>17</td>
</tr>
<tr>
<td>1967</td>
<td>-0.730</td>
<td>-0.106</td>
<td>6.827</td>
<td>9</td>
<td></td>
<td>-0.486</td>
<td>-0.066</td>
<td>4.161</td>
<td>15</td>
</tr>
<tr>
<td>1968</td>
<td>-0.759</td>
<td>-0.122</td>
<td>7.283</td>
<td>8</td>
<td></td>
<td>-0.520</td>
<td>-0.068</td>
<td>4.278</td>
<td>15</td>
</tr>
<tr>
<td>1969</td>
<td>-0.766</td>
<td>-0.120</td>
<td>7.240</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>-0.734</td>
<td>-0.108</td>
<td>6.777</td>
<td>9</td>
<td></td>
<td>-0.417</td>
<td>-0.055</td>
<td>3.871</td>
<td>18</td>
</tr>
<tr>
<td>1971</td>
<td>-0.854</td>
<td>-0.105</td>
<td>6.595</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>-0.859</td>
<td>-0.125</td>
<td>7.306</td>
<td>8</td>
<td></td>
<td>-0.453</td>
<td>-0.053</td>
<td>3.894</td>
<td>19</td>
</tr>
<tr>
<td>1973</td>
<td>-0.876</td>
<td>-0.123</td>
<td>7.342</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Regional distribution of officers' residence in percent.

<table>
<thead>
<tr>
<th>Region</th>
<th>Factory ship</th>
<th>Catcher boat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokkaido</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>Tohoku</td>
<td>9.0</td>
<td>19.3</td>
</tr>
<tr>
<td>Kanto</td>
<td>7.8</td>
<td>9.0</td>
</tr>
<tr>
<td>Chubu</td>
<td>8.9</td>
<td>8.7</td>
</tr>
<tr>
<td>Kinki</td>
<td>10.3</td>
<td>11.6</td>
</tr>
<tr>
<td>Chugoku</td>
<td>8.2</td>
<td>9.4</td>
</tr>
<tr>
<td>Shikoku</td>
<td>8.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Kyushu</td>
<td>9.9</td>
<td>15.5</td>
</tr>
<tr>
<td>Keihin</td>
<td>36.6</td>
<td>13.1</td>
</tr>
</tbody>
</table>

i）職員

まず職員の場合を Table 5. に示す。この表によれば大型船職員の現住所はほぼ全国的に平均的に分布しているが、京浜地区が30〜40％と比較的多く、現住所から出身地の絶対的な傾向を明らかにすることはできなかった。

また、船員においても大体大型船と同様の傾向を示すが、次に述べる捕鯨船係員やや近似の傾向を認められる。しかしながら、このうち砲手のみは部員の場合以上に地域的に偏った出身地分布を示している。本調査において砲手のみは通算延べ人員に比して5年分の資料から砲手の絶対人員についてその構築を調査した。この間における砲手の実数は28名であり、その内訳は高知県7名（室戸5、清水2）、宮城県7名（気仙沼3、その他4）、和歌山県6名、北海道3名、岩手2名およびその他3名であり、いずれもその出身地は古来沿岸捕鯨が行なわれていた地域である。

ii）事業員

大型船と捕鯨船の部員および事業員の通年現在住所出現ひん度を職員長として全体に分け Table 6. に示す。この表によれば、事業員出身地の出現率が高い県は宮城（31.1％）、青森（15.6％）、長崎（13.1％）、高知（11.7％）、北海道（10.4％）、秋田（5.4％）、岩手（2.7％）、和歌山（1.1％）およびその他（8.9％）であり、福島、山形を除く東北地方の出身者は54.8％と過半を占めている。

また、上述のその他の地域には各地方から京浜地区に転居したものが含まれているが事業員の場合、その他の地域は8.9％と低い現在住所をそのまま出身地と考えることができる。さらに職員職員の出身地は事業員全体の出身地を反映しており、宮城、高知、長崎の順に多い。なお、事業員の出身地は特殊な地方、たとえば千葉、富士、太地、五島等、に集中していることが多く、ここでも古くから沿岸捕鯨が行なわれていた地域の影響がみられる。

iii）部員

大型船部員では、事業員に比べて北海道、青森が減少し、和歌山が増加している。ひん度の高い順に並べると宮城（18.0％）、長崎（8.1％）、高知（8.0％）、
Table 6. Frequency distribution of residence of crew and factory workers in percent.

<table>
<thead>
<tr>
<th>Class</th>
<th>Crew-F</th>
<th>Bosun-F</th>
<th>Worker</th>
<th>Overseer</th>
<th>Crew-C</th>
<th>Bosun-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokkaido</td>
<td>1.6</td>
<td>2.4</td>
<td>10.4</td>
<td>5.3</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Aomori</td>
<td>2.0</td>
<td>0.5</td>
<td>15.6</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Akita</td>
<td>0.7</td>
<td>-</td>
<td>5.4</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Iwate</td>
<td>0.8</td>
<td>1.2</td>
<td>2.7</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Miyagi</td>
<td>18.0</td>
<td>12.7</td>
<td>31.1</td>
<td>59.6</td>
<td>30.9</td>
<td>29.8</td>
</tr>
<tr>
<td>Kochi</td>
<td>8.0</td>
<td>1.2</td>
<td>-</td>
<td>21.3</td>
<td>15.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Nagasaki</td>
<td>8.1</td>
<td>3.2</td>
<td>13.1</td>
<td>7.5</td>
<td>2.7</td>
<td>6.9</td>
</tr>
<tr>
<td>Wakayama</td>
<td>4.1</td>
<td>0.5</td>
<td>1.1</td>
<td>-</td>
<td>16.1</td>
<td>10.9</td>
</tr>
<tr>
<td>Others</td>
<td>56.8</td>
<td>78.8</td>
<td>8.9</td>
<td>4.9</td>
<td>32.3</td>
<td>48.0</td>
</tr>
</tbody>
</table>

和歌山（4.1%）、青森（2.0%）、北海道（1.6%）であるが、事業員に比べその他の地域（56.8%）が著しく大きい。このことは地域の出身地が全国に分散している傾向を示している。また職質別でもこれとは同様の傾向を示している。その他が圧倒的に多い。これは母船の基地である京浜地区に転居する傾向が高いことや、甲板長などは船長のごとく出身者の多い地方の要職関係が重視されるのに反し、技術と人格に重視をおいて任命されるためであろう。また本調査を行なった際の印象では司機長を含め同級船員は京浜地区が圧倒的に多かった。捕鯨船の船員の場合、事業員と比べ青森、秋田は皆無であり、岩手著しく少なく、宮城、高知（室戸、清水）、和歌山（太地）が圧倒的に多い。また殖年を年次別にみると、長崎県は年次減少、北海道は増加する傾向を示している。

職質別はその他の地域を除くと宮城。和歌山、高知の順となっており、職員の場合と同様東北および四国出身者が比較的多く、九州出身者は年々減少の傾向を示している。

まとめ

以上の結果をまとめると次のことがいえる。

1) 全乗組員の平均年令の経年変化は高令化の傾向にあり、この傾向は事業員、船員および乗組員のいずれの職種においても見られ、乗組員の定着がきわめて高いことを示しているが、26年未満の事業員、甲板員、調理員船、船長級および三橋機関においてはその傾向は比較的著しい。

2) 事業員および船員の年次別年令組成の形は、捕鯨船員がピーク値を示した1966年頃まではピーク値が年令が低い方に偏った典型的なポアソン分布（P=0.3）を示し、これ以後は平均年令の高令化と共によくピーク値が年令範囲における中央値に近づき1970年にはほぼ正規分布となり、その後もこのピーク値は中央値よりもさらに高令側に移動している。

3) 平均年令の高令化は同時に当該職階間の年令差を大きくする傾向を生じている。

4) 乗組員の出身地は、大型船において職員は全国的にほぼ平均に分散しており、船員は宮城、長崎、高知、和歌山の捕鯨に関係のある地方の出身者が選出を占めている。事業員でも宮城、長崎、高知、岩手等が船員の場合と同様過半を占めている。この傾向は職種において最も著しい。

本研究にあたり、株式会社極洋旧捕鯨部、極洋会および捕作会の諸兄に貴重な資料を提供して頂いたことを深く感謝する。

文献

(1) 眞野敏弘・高山久明・柴田浩司（1975）本誌、39，53-59。