<table>
<thead>
<tr>
<th>Title</th>
<th>Serum Starvation Activates NF-κB Through G Protein β2 Subunit-Mediated Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kohno, Tomoko; Kubo, Yoshinao; Yasui, Kiyoshi; Haraguchi, Megumi; Shigematsu, Sayuri; Chua, Koon Jiew; Matsuyama, Toshifumi; Hayashi, Hideki</td>
</tr>
<tr>
<td>Citation</td>
<td>DNA and Cell Biology, 31(11), pp.1636-1644; 2012</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-11-01</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/10069/32434">http://hdl.handle.net/10069/32434</a></td>
</tr>
</tbody>
</table>

This is a copy of an article published in the DNA and Cell Biology © 2012 Mary Ann Liebert, Inc.; DNA and Cell Biology is available online at: http://online.liebertpub.com.
Serum Starvation Activates NF-κB Through G Protein β2 Subunit-Mediated Signal

Tomoko Kohno, Yoshinao Kubo, Kiyoshi Yasui, Megumi Haraguchi, Sayuri Shigematsu, Koon Jiew Chua, Toshifumi Matsuyama, and Hideki Hayashi

Several cell stresses induce nuclear factor-kappaB (NF-κB) activation, which include irradiation, oxidation, and UV. Interestingly, serum-starving stress-induced NF-κB activation in COS cells, but not in COS-A717 cells. COS-A717 is a mutant cell line of COS cells that is defective of the NF-κB signaling pathway. We isolated genes with compensating activity for the NF-κB pathway and one gene encoded the G protein β2 (Gβ2). Gβ2 is one of the G protein-coupled receptor signaling effectors. In COS-A717 cells, Gβ2 expression is significantly reduced. In Gβ2 cDNA-transfected COS-A717 cells, the NF-κB activity was increased along with the recovery of Gβ2 expression. Furthermore, serum-starving stress induced the NF-κB activity in Gβ2-transfected COS-A717 cells. Consistently, the serum-starved COS cells with siRNA-reduced Gβ2 protein expression showed decreased NF-κB activity. These results indicate that Gβ2 is required for starvation-induced NF-κB activation and constitutive NF-κB activity. We propose that serum contains some molecule(s) that strongly inhibits NF-κB activation mediated through Gβ2 signaling.

Introduction

Nuclear factor-kappaB (NF-κB) is a ubiquitously expressed transcription factor with critical roles in cell survival, proliferation, apoptosis, immune response, and inflammation. NF-κB usually exists as a heterodimer of p50 and p65 (Rel A), and is kept in the cytoplasm through an association with inhibitor of kappaB (IκB) inhibitory proteins. After various stimulations, the serine residues at positions 32 (S32) and 36 (S36) in the IκB protein are phosphorylated (Brown et al., 1995) by the IκB kinase (IKK) complex (Zandi et al., 1997), and the IκB protein is degraded by the ubiquitin–proteasome pathway (Chen et al., 1995). The IKK complex consists of two catalytic subunits, IKK1 and IKK2 (also referred to as IκKα and IκKβ), in a regulatory subunit, NEMO (Yamaoka et al., 1998). Cytokines and various cell stresses, including irradiation (Criswell et al., 2003), oxidation (Marshall et al., 2000), and UV (Kato et al., 2003), induce NF-κB activation. Serum starvation also activates NF-κB in various cell lines (Ryter and Gomer, 1993; Grimm et al., 1996), indicating that serum contains an unknown inhibitor(s) of NF-κB.

On the other hand, constitutively active NF-κB exists in certain normal cells (Pagliari et al., 2000; Lilienbaum and Israel, 2003) and several tumor cells without stimulation (Mori et al., 1999; Lind et al., 2001). However, the mechanism by which NF-κB is constitutively activated in these cells is not known. COS cells have a relatively high level of basal NF-κB activity. We established a mutant cell line, COS-A717, with a defective NF-κB signaling pathway (Kohno et al., 2008). The basal level of NF-κB activity in the COS-A717 cells was reduced by as much as sevenfold, as compared with that in the parental COS cells. Serum starvation induced NF-κB activation in the parental COS cell line, but not in the COS-A717 cell clone. Since the COS-A717 cell clone was constructed by the treatment of COS cells with a frameshift-inducing agent, it is most likely that the NF-κB activating factor(s) expressed in the parental COS cells is not functional in the COS-A717 cells. We previously isolated the B cell activating factor of the TNF family (BAFF) receptor as an NF-κB activator in COS-A717 cells (Kohno et al., 2008). However, the original COS cells do not express BAFF-R, indicating that BAFF-R is not responsible for the defective NF-κB signaling in the COS-A717 cells, and activates NF-κB through a salvage pathway.

In this study, we isolated the guanine nucleotide-binding protein β2 subunit (Gβ2) cDNA as another NF-κB activator by screening a human spleen cDNA expression library. The guanine nucleotide-binding proteins (G proteins) are signal transducers required for various G protein coupled receptor (GPCR)-effector networks (Xie et al., 2000; Wu et al., 2001; Albert and Robillard, 2002). GPCRs ‘transduce signals through heteromeric G proteins, and several of them activate NF-κB (Xie et al., 2000; Grabiner et al., 2007; Sun et al., 2009). The heteromeric G proteins consist of α, β, and γ subunits,
and the z subunit has GTPase activity. When GPCRs interact with their ligands, the active GTP-bound z subunit is released from the heteromeric G protein complex, and Gz and Gif induce downstream signaling (Stephens et al., 1994). The Gi2 expression level in the parental COS cells is much higher than that in the mutant COS-A717 cells. Transfection of a Gi2 expression plasmid activated NF-kB in COS-A717 cells. The knockdown of Gi2 expression by siRNA in COS and HT1080 cells reduced the basal NF-kB activity. These results indicate that the activation of the GPCR signal pathway by Gi2 results in constitutive NF-kB activation in the transformed cells, and the defect of Gi2 expression is one of the determinants for reduced NF-kB activity in the COS-A717 mutant cells.

Serum starvation activates NF-kB in COS cells, but not in COS-A717 cells. Transfection of COS-A717 cells with Gi2 restored the starvation-induced NF-kB activation. These results show that NF-kB activation by serum starvation occurs through the Gi2 signaling pathway, and the inhibitor(s) present in serum suppress the Gi2 signal. Taken together, our findings suggest that the constitutive NF-kB activation in transformed cells is induced by the GPCR signaling pathway through Gi2, and that serum contains factor(s) reducing NF-kB activity by suppressing the GPCR signaling.

Materials and Methods

Plasmids and reagents

The human spleen cDNA library was purchased from Life Technologies. The five-tandem xB luciferase reporter vector (5×kB luciferase) was purchased from Stratagene. The IkBx superrepressor (IkBx-SR) expression plasmid was described previously (Sugita et al., 2002). The expression vectors for the dominant negative forms of Ikk1 (Ikk1.DN), Ikk2 (Ikk2.DN), and NEMO (NEMO.DN) were kind gifts from Dr. Yamaoka (Tokyo Medical and Dental University, Tokyo, Japan) (Hironaka et al., 2004). The expression vector for the dominant negative mutant of Akt (Akt.DN) was generously provided by Dr. V. Stambolic (Ontario Cancer Institute, Toronto, Canada). Wortmannin was purchased from Sigma.

Cells

The mutant cell lines COS-A717 and COS-A717-GS were described previously (Kohno et al., 2008). The mouse spleen cells were obtained from a C57BL/6 mouse. COS (Kohno et al., 2008), HT1080 (Jones et al., 1975), and HEK293T cells were maintained in the Dulbecco’s modified Eagle’s medium, and ST1 cells (Yamada, 1996) were maintained in the Dulbecco’s modified Eagle’s medium (DME, and ST1 cells (Yamada, 1996) were maintained in the Dulbecco’s modified Eagle’s medium (DME, and Fuji et al., 2008), HT1080 (Jones et al., 1975), and HEK293T cells were maintained in the RPMI1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) at 37°C in a humidified 5% CO₂ atmosphere.

Expression cloning of Gi2

Isolation of genes with compensating activity for the NF-kB activation pathway was performed according to the previously described method (Kohno et al., 2008). Briefly, COS-A717-GS cells were transfected with a human spleen cDNA library (Life Technologies) using the FuGene 6 reagent. After 48 h of transfection, the top 0.5% fraction of fluorescent cells was collected using a FACStar Plus (Becton, Dickinson and Co.). Plasmids were extracted from sorted cells (Hirt, 1967), amplified in bacteria, and used in three subsequent rounds of flow cytometry-based enrichment. Individual bacterial colonies obtained from the third sorting were grouped into pools of 50 colonies. Positive pools were subdivided further into subpools with half the number of colonies, and were subjected to repeated screening. This process finally yielded independent clones that conferred compensation for the NF-kB activation pathway in COS-A717 cells.

Transfection and luciferase assay

Cells were transfected with a 5×kB-luciferase reporter and a Gi2 expression plasmid, as indicated in the text and figure legends. Transient transfections were performed using the FuGene 6 reagent (Roche). When necessary, additional DNA (pcDNA3.1) was added to equalize the amount of transfected DNA in each sample. At 48 h post-transfection, the kB-directed expression of firefly luciferase was determined, using luciferase assay reagents (Promega), and the luciferase activities were measured with a BioOrbit 1254 luminometer. The relative transfection efficiency in each sample was determined by measuring the Renilla luciferase activity. The data were normalized per transfection efficiency. Data shown are averages and SD from three independent experiments.

Western blot analysis

Cell extracts were prepared from the cells transfected for the luciferase assay. Cell lysates were resolved by 12.5% SDS PAGE, transferred onto an Immobilon-P membrane (Millipore), and blocked with 5% nonfat dry milk in TBS with 0.5% Tween 20. The blots were incubated with anti-Gi2, anti-IKK1, anti-IKK2, anti-NEMO, anti-Akt1, anti-IkBx, and anti-phospho S32, and S36-containing peptide of IkBx antibodies (Santa Cruz Biotechnology; refer to Tables 1 and 2), or an anti-β-actin antibody (Chemicon), followed by an incubation with a horseradish peroxidase-conjugated goat anti-mouse or anti-rabbit Ig (Amersham Pharmacia Biotech). The blots were visualized with the ECL detection system (Amersham Pharmacia Biotech).

Electrophoretic mobility shift assay

Preparation of nuclear extracts for electrophoretic mobility shift assays (EMSAs) was performed as described previously (Sugita et al., 2002). The consensus kB site 5’-AGTTGAGG GACACCTCCCAGGC-3′ and mutant 5’-AGTTGAGGCGAC TTTCCCAGGC-3′ oligonucleotides were obtained from Santa Cruz Biotechnology. The double stranded oligonucleotides were end-labeled with [γ-32P] ATP, using T4 polynucleotide kinase (Takara). The reaction was conducted in a total volume of 10 μL, using 10 μg of nuclear extract, 1 μg of poly(dI-dC), 20 mM HEPES-NaOH (pH 7.6), 100 mM NaCl, 1 mM DTT, 1 mM PMSF, and 2% glycerol. The binding reaction mixture was incubated with 10,000 cpm of radiolabeled probe for 15 min. For the competition and supershift assays, a 20-fold excess of unlabeled or mutant oligonucleotide, and the antibodies to p65 or p50 (Santa Cruz Biotechnology) were added to the reaction, respectively. The samples were loaded onto a 5% nondenaturing polyacrylamide gel, which was run in a 0.5×TBE buffer. After
electrophoresis, the gel was dried and processed for autoradiography.

siRNA

The nucleotide sequences of the two siRNAs for Gβ2 are as follows:

#1 sense 5’-CAUCUGCUCCAUCUACACGdTdT-3’,
anti-sense 5’-GCUGUAAGGAGCAUUGdTdT-3’;
#2 sense 5’-AGACCUUCAUCGGCCAUGdTdT-3’,
anti-sense 5’-UCAUGGCCGAUGUCdGdT;
and sense 5’-GGCUACGUCCAGGACGUAGCAdTdT-3’, anti-sense 5’-UGCGCUCCUGGACGUAGCCdTdT-3’ for GFP. The annealed oligonucleotides were transfected by using Lipofectamine 2000 (Invitrogen). Cells were maintained in Dulbecco’s modified Eagle’s medium without FBS at the transfection. Cells were harvested after 24 and 48 h after the transfection for COS and HT1080 cells, respectively. For the luciferase assay, cells were transfected with the 5’·κB-luciferase reporter using the FuGene 6 reagent, at 6 h after the siRNA transfection.

Results

Serum-starving stress induces NF-κB activation

Cell stresses, such as irradiation, UV, and oxidation (Supplementary Fig. S1; Supplementary Data are available online at www.liebertpub.com/dna), induce NF-κB activation. Cells are usually cultured with 10% FBS in medium without FBS at the transfection. Cells were harvested after 24 and 48 h after the transfection for COS and HT1080 cells, respectively. For the luciferase assay, cells were transfected with the 5×κB-luciferase reporter using the FuGene 6 reagent, at 6 h after the siRNA transfection.

Expression cloning of an NF-κB activating molecule using COS-A717 cells

Many transformed cell lines containing the COS cell line have constitutively activated NF-κB signaling. To identify NF-κB activators in the COS cells, a COS-A717 cell derivative containing the GFP gene under the control of the Sp1 site-deleted HIV-1 LTR was constructed, and the cells were designated as COS-A717-GS. The GFP is expressed by NF-κB activation in the COS-A717-GS cells, because the expression from the Sp1 site-deleted HIV-1 LTR is NF-κB-dependent. The COS-A717-GS cells were transfected with a human spleen cDNA expression library, and GFP-expressing cells were selected (Fig. 2A). The sequence analysis of the cDNA expressed in the GFP-positive COS-A717-GS cells revealed that it perfectly matched the Gβ2. The expression level of the Gβ2 protein in COS-A717 cells was much lower than that in the parental COS cells (Fig. 2B).

To confirm that Gβ2 activates NF-κB activity, COS and COS-A717 cells were transfected with the Gβ2 expression plasmid, and the NF-κB promoter activity was measured using the 5×κB-luciferase plasmid. Gβ2 activated the NF-κB promoter activity in both COS and COS-A717 cells, in a dose-dependent manner (Fig. 2C). Transfection of the COS-A717 mutant cells with the Gβ2 expression plasmid (0.5 μg) restored the NF-κB activity comparable to the parental COS cells (sevenfold). When 0.5 μg of the Gβ2 expression plasmid was transfected
into the COS cells, the NF-κB activity was also increased by threefold. The DNA-binding activity of NF-κB was elevated by Gβ2 by about 1.7- and 6.2-fold in COS and COS-A717 cells, respectively (Fig. 3D). The complex formation was inhibited by a wild-type κB oligonucleotide competitor, but not by a mutant κB oligonucleotide. The complex was supershifted by both anti-p65 and -p50 antibodies, indicating that the complex consisted of p65 and p50 (Fig. 3D). The Gβ2 transfection activated the NF-κB signal more efficiently in the mutant COS-A717 cells than in the COS cells that originally express Gβ2. These results indicate that Gβ2 activates NF-κB signaling and the defect of Gβ2 expression is one of the determinants for the reduced NF-κB activity in the COS-A717 cells.

Gβ2 is required for NF-κB activation induced by serum starvation

Serum starvation activated NF-κB by 10-fold in COS cells, but had no effect in COS-A717 cells (Fig. 3A). Since the level of the Gβ2 protein is much lower in the COS-A717 cells than in the parental COS cells, we examined whether Gβ2 was involved in the NF-κB activation by serum starvation. Serum starvation elevated the NF-κB activity by fourfold in the Gβ2-transfected COS-A717 cells, indicating that Gβ2 is required for the serum starvation-induced NF-κB activation and that the Gβ2-activated signal is inhibited by the unknown factor(s) present in serum. However, because the level of NF-κB activity in the starved Gβ2-expressing COS-A717 cells was lower than that in the starved COS cells, the COS-A717 cells have additional defect(s) in the NF-κB signal activation.

FIG. 2. G protein β2 (Gβ2) activates NF-κB. (A) Identification of Gβ2 by expression cloning. (A-1) COS-A717-GS cells were transfected with plasmids obtained from a positive pool of 50 bacterial transformants (pool 1) following four rounds of FACS enrichment. (A-2) COS-A717-GS cells were transfected with plasmids from a positive pool (1-4), containing 20 bacteria colonies. (A-3) COS-A717-GS cells were transfected with plasmids from a positive pool (1-4-10), containing 10 bacterial colonies. (A-4) COS-A717 GS cells were transfected with a Gβ2-encoding clone. (B) Western blot analysis of Gβ2 in COS and COS-A717 cells. Proteins were analyzed by immunoblotting with an anti-Gβ2 antibody (top) and an anti-β-actin antibody (bottom). (C) Gβ2-mediated NF-κB activation in COS-A717 cells. COS and COS-A717 cells were transiently transfected with 0.25 μg of the 5·κB-luciferase reporter and the Gβ2 expression construct (0.05, 0.1, 0.25, and 0.5 μg), and then additional DNA (pcDNA3) was added to make the total amount of DNA 1 μg/well. At 48 h post-transfection, the cells were harvested and the luciferase activity was measured. The relative transfection efficiency in each sample was determined by the measurement of the Renilla luciferase activity. The relative luciferase activity in control COS cells (without Gβ2) was set to 1.0. Data shown are averages + SD from three independent experiments. (D) Gβ2 induced the NF-κB-binding ability in COS-A717 cells and COS cells. Nuclear proteins from untransfected (lanes 1, 7) or Gβ2 transfected (lanes 2–6, 8–12) COS-A717 cells or COS cells were isolated. The unlabeled consensus κB oligonucleotide (lanes 3, 9) or the mutant κB oligonucleotide (lanes 4, 10) was added as a competitor in a 20-fold molar excess to the binding reaction. Abs against p65 (lanes 5, 11) and p50 (lanes 6, 12) were added to the reaction for a supershift assay. The arrow indicates the NF-κB-containing complex.
Gβ2 is involved in NF-κB in HT1080 human fibrosarcoma cell line

HT1080 cells also have a relatively high level of basal NF-κB activity. We examined whether Gβ2 contributes to the constitutive activation of NF-κB in HT1080 cells. Knockdown of Gβ2 expression by siRNA reduced the basal NF-κB activity not only in COS cells, but also in HT1080 cells (Fig. 3B). The siRNA against Gβ2 indeed reduced the Gβ2 protein level. Consistent with the kB promoter activity, the knockdown of Gβ2 inhibited the NF-κB-binding capability to the target sequence (Fig. 3C). These results indicate that Gβ2 is required for the constitutive activation of NF-κB in COS and HT1080 cells, suggesting that Gβ2-mediated signaling contributes to the constitutive NF-κB activation. The serum-deprived Gβ2-mediated NF-κB activation in COS cell was also confirmed using another siRNA (Supplementary Fig. S2).

Impact of IKKs, NEMO, and IκB in Gβ2-induced NF-κB activation

To determine whether the Gβ2 induced NF-κB activation requires IκB phosphorylation, a IκBα-SR with mutations at the inducible phosphorylation sites, S32G and S36A, was coexpressed with Gβ2 in COS-A717 cells. The IκBα-SR abolished the Gβ2-induced NF-κB activation in a dose-dependent fashion (Fig. 4A). This result suggests that the phosphorylation of IκBα at S32 and S36 is necessary for the Gβ2-induced NF-κB activation. An important regulator of phosphorylation in the IκB pathway is the IKK complex, which comprises multiple kinases, including IKK1 (IKKα), IKK2 (IKKβ), and NEMO (IKKγ). We examined whether IKK1, IKK2, and/or NEMO were involved in the Gβ2-induced NF-κB activation. Dominant negative forms of IKK1 (IKK1.DN), IKK2 (IKK2.DN), and NEMO (NEMO.DN) were each coexpressed in the Gβ2-transfected COS-A717 cells. As shown in Figure 4B-D, IKK1.DN, IKK2.DN, and NEMO.DN were each able to reduce the Gβ2-induced NF-κB activation in COS-A717 cells in a dose-dependent fashion, indicating that IKK1, IKK2, and NEMO are involved in the Gβ2-induced NF-κB activation. Especially, the IKK2.DN more efficiently suppressed the Gβ2-mediated NF-κB activation than IKK1.DN and NEMO.DN. This result suggests that IKK2 plays an important role in the Gβ2-induced NF-κB activation, like the bradykinin-induced NF-κB activation through Gαq and Gβγ (Xie et al., 2000). To confirm the expressions of the dominant negative and endogenous IKK1, IKK2, NEMO, IκBα, and Akt, COS cells were transfected with the mutant expressing plasmids, and the cell lysates were subjected to Western blotting analysis using their specific antibodies. The descriptions of the dominant negative mutants and their specific antibodies used here are summarized in the Tables 1 and 2, respectively. As shown in Figure 5A, we have confirmed that the anti-IKK1, NEMO, and Akt antibodies were able to detect the simian endogenous proteins as well as their human and mouse dominant negative mutants. On the other hand, the antibodies against IKK2 and IκBα reacted to their human dominant negative mutants and the human endogenous proteins in HEK293T cells, but not to the simian endogenous proteins. Considering the different affinities of the antibodies between endogenous simian proteins and their human or mouse counterparts, we could not assess precisely the relative amounts of dominant negative mutants to endogenous proteins in COS cells. However, each

---

**FIG. 3.** Gβ2 is required for serum starvation-induced NF-κB activation and for constitutive NF-κB activation in transformed cells. (A) The serum-starving stress-induced NF-κB activation was analyzed by a luciferase assay. COS, COS-A717, and Gβ2-transfected COS-A717 cells were transiently transfected with the 5×κB-luciferase reporter. Six hours after transfection, the cells were washed with phosphate buffered saline (PBS) and incubated with (10%) or without FBS (0%) for 36h for the luciferase assay. The luciferase activities in COS cells incubated with 10% FBS were set as 1.0. The activations were significant (*p<0.05). (B) The Gβ2 siRNA reduced the NF-κB activity in COS and HT1080 cells. The NF-κB activity was determined by transfection with the 5×κB-luciferase reporter together with the GFP or Gβ2 siRNA, and shown as the % of that in cells transfected with the GFP siRNA. Western blot analyses of Gβ2 (top) and β-actin (bottom) in cells transfected with the GFP or Gβ2 siRNA#1 were performed. The inhibitions were significant (*p<0.05). (C) Nuclear cell extracts were isolated from COS and HT1080 cells transfected with the GFP or Gβ2 siRNA. The arrowhead indicates the NF-κB-containing complex.
FIG. 4. Involvement of IκB, IκB kinase 1 (IKK1), IκB kinase 2 (IKK2), and NEMO in Gβ2-induced NF-κB activation. COS-A717 cells were transfected with 0.25 μg of the 5×κB-luciferase and the mutant expression plasmid of IκBa super-repressor (IκBa-SR) (A), IKK1 (IKK1.DN) (B), IKK2 (IKK2.DN) (C), NEMO (NEMO.DN) (D), or Akt (Akt.DN) (E), together with the Gβ2 construct (0.25 μg) or pcDNA3.1. The pcDNA3.1 plasmid was added to make the total amount of DNA 1 μg/well. COS-A717 cells were cotransfected with 0.5 μg of the 5×κB-luciferase reporter without (control) or with 0.5 μg of the Gβ2 construct. Wortmannin was added 1 h before transfection (F). The relative luciferase activity in the control cells without Gβ2 was set as 1.0. Data shown are averages and SD from three independent experiments. The inhibitions were significant (*p < 0.05).

Table 1. Characteristics of the Dominant Negative mutants

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Species</th>
<th>Structure</th>
<th>MW (kDa)</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>IκBα</td>
<td>Human</td>
<td>S32G, S36A mutant</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>IKK1</td>
<td>Human</td>
<td>N145D mutant</td>
<td>85</td>
<td>VSV</td>
</tr>
<tr>
<td>IKK2</td>
<td>Human</td>
<td>N145D mutant</td>
<td>87</td>
<td>VSV</td>
</tr>
<tr>
<td>NEMO</td>
<td>Mouse</td>
<td>97–412 C-terminal fragment</td>
<td>37</td>
<td>VSV</td>
</tr>
<tr>
<td>Akt</td>
<td>Mouse</td>
<td>K179A, T308A, S473A mutant</td>
<td>69</td>
<td>—</td>
</tr>
</tbody>
</table>

MW, molecular weight.

Table 2. Characteristics of the Antibodies

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Cross-reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human IκBα C-terminal peptide</td>
<td>Human/mouse/rat</td>
</tr>
<tr>
<td>Human IKK1 full-length</td>
<td>Human/mouse/rat</td>
</tr>
<tr>
<td>Human IKK2 C-terminal peptide</td>
<td>Human/canine</td>
</tr>
<tr>
<td>Human NEMO full-length</td>
<td>Human/mouse/rat</td>
</tr>
<tr>
<td>Human Akt1 345–480 peptide</td>
<td>Human/mouse/rat</td>
</tr>
<tr>
<td>Human phospho-S32 and S36-containing peptide</td>
<td>Human/mouse</td>
</tr>
</tbody>
</table>
dominant negative mutant is likely to be expressed enough to suppress its endogenous protein. To evaluate the phosphorylation and degradation of IκBα in COS, COSA717, and COSA717-Gβ2 cells by serum deprivation, we carried out Western blotting analysis using their specific antibodies. There were no significant changes in the phosphorylation of IκBα of COS, COSA717, and COSA717-Gβ2 cells by serum deprivation, using a phosphorylation-specific antibody (right panel of Fig. 5B). We could not assess the degradation of IκBα, because the anti-IκBα antibody was actually able to detect the human IκBα protein, but not simian COS IκBα, or because the IκBα expression in COS cell is too low to be detected by this antibody (Fig. 5A and left panel of Fig. 5B). The NF-κB activation by serum deprivation was dependent on IKK1, IKK2, NEMO, and IκBα, and this unique characteristic was not related to the IκBα phosphorylations at S32 and S36.

Because PI3K and Akt are upstream factors of IKKs in the NF-κB activation pathway (Ozes et al., 1999; Romashkova and Makarov, 1999; Xie et al., 2000), we examined whether the Gβ2-induced NF-κB activation occurs through PI3K and Akt activation. However, the PI3K inhibitor, Wortmannin, and a dominant negative mutant of Akt did not affect the Gβ2-induced NF-κB activation in COS-A717 cells (Fig. 4E, F). This result suggests that PI3K and Akt is not involved in the Gβ2-induced NF-κB activation.

**Discussion**

Many cell stresses activate NF-κB. We have shown here that serum starvation activates NF-κB signal, indicating that serum contains unknown inhibitor(s) of NF-κB signal. Cell stresses, such as radiation (Criswell et al., 2003), oxidation (Marshall et al., 2000), and UV (Kato et al., 2003) positively control the NF-κB signaling. Interestingly, serum negatively regulates the NF-κB signaling, and starvation stress induces NF-κB activation by exclusion of the negative factor of serum.

Serum starvation activated NF-κB signaling in COS cells, but not in COS-A717 cells. The transfection of COS-A717 cells with Gβ2 partially restored the serum starvation-induced NF-κB activation. This result indicates that Gβ2 is required for the starvation-induced NF-κB activation, and the serum inhibitor suppresses the Gβ2-induced signaling pathway (Fig. 6).

Serum starvation of cells is frequently used in many biological experiments, including cell cycle synchronization and induction of apoptosis and autophagy. These biological events induced by starvation unexpectedly include the activation of Gβ2 and NF-κB signals. Therefore, these signaling might affect the synchronization of the cell cycle and the induction of apoptosis and autophagy by starvation, and scientists should consider the effects of the Gβ2 and NF-κB signals in the biological experiments using serum starvation.
We are trying to identify the serum inhibitor, and it will provide great impacts into many biological research fields. NF-κB is constitutively activated in several transformed cell lines, suggesting that NF-κB signaling is involved in cellular transformation. However, the mechanism has not been elucidated yet. COS-A717 cells are mutant cells in which the basal NF-κB activity is much lower compared with the parental COS cells. Here, we showed that COS-A717 cells expressed a lower level of Gβ2 than COS cells, and the transfection of COS-A717 cells with Gβ2 restored the basal NF-κB activity, suggesting that the reduced expression level of Gβ2 is responsible for the defective NF-κB signaling in COS-A717 cells. Furthermore, the knockdown of Gβ2 expression by siRNA reduced the basal NF-κB activity not only in the COS cells, but also in the HT1080 cells, another transformed cell line with constitutively activated NF-κB signaling. These results indicate that Gβ2 is required for the constitutive activation of NF-κB in these transformed cells. This conclusion is strongly supported by previous reports showing that certain GPCR signals or the Gβ1/2 complex activate NF-κB signaling (Xie et al., 2000; Grabiner et al., 2007; Sun et al., 2009). Furthermore, the Tax oncoprotein of HTLV-1 activates NF-κB (Mori et al., 1999; Gohda et al., 2007) as well as the signals of CXCR4, a GPCR, by binding to the Gβ subunit (Twizere et al., 2007), consistent with our conclusion. Although the Gβ1 complex activates NF-κB through PI3K (Stephens et al., 1994; Xie et al., 2000), a PI3K inhibitor did not affect the Gβ2-induced NF-κB activation, suggesting that Gβ2 activates independently of PI3K in the NF-κB activation pathway (Fig. 6).

In summary, this study found that Gβ2-induced signaling activates NF-κB independently of PI3K and Akt in COS cells (Fig. 6). Unknown factor(s) present in serum inhibit the Gβ2-induced signaling. Therefore, serum starvation activates NF-κB by removing the serum inhibitor(s). The Gβ2-induced signaling is the target of the serum inhibitor, because exclusion of the serum inhibitor by starvation elevates NF-κB activity in Gβ2-expressing COS cells, but does not affect in Gβ2-defective COS-A717 cells.

Acknowledgments

We thank Dr. S. Yamaoka (Tokyo Medical and Dental University, Tokyo, Japan) for the plasmids expressing dominant negative forms of IKK1 (IKK1.DN), IKK2 (IKK2.DN), and NEMO (NEMO.DN), and Dr. V. Stambolic (Ontario Cancer Institute, Toronto, Canada) for the Akt dominant negative (Akt.DN) expression plasmid. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (22659092), and by the Global Center of Excellence Program at Nagasaki University (www.tm.nagasaki-u.ac.jp/gcoe).

Disclosure Statement

No competing financial interests exist.

References


Address correspondence to:
Hideki Hayashi, M.D., Ph.D.
Department of Cytokine Signaling
Graduate School of Medical Sciences
Nagasaki University
Nagasaki 852-8523
Japan

E-mail: hhayashi@nagasaki-u.ac.jp

Received for publication February 22, 2012; revised in revised form July 6, 2012; accepted July 16, 2012.