A Note on a Supersingular Function Field

Tadashi WASHIO and Tetsuo KODAMA*

Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki, Japan (852).
(Received Oct. 31, 1985)

Abstract

Let K be a finite field of characteristic $p \neq 2$ and let $A = K(x, y)$ be an algebraic function field over K defined by $y^2 = x^{2g+1} + a$ ($a \neq 0$, $a \in K$), where g means a positive integer such that $(p, 2g+1) = 1$. Using information about the Hasse-Witt matrix of A, the supersingularity of A is studied only in the case that $2g + 1$ is a power of a prime number.

1. Preliminary. The purpose of this note is to study the supersingularity of a certain hyperelliptic function field by using information about the Hasse-Witt matrix.

Let $K = GF(q)$ be a finite field of characteristic $p \neq 2$ and let $A = K(x, y)$ be an algebraic function field over K defined by

$$y^2 = x^{2g+1} + a$$

where g denotes a positive integer satisfying $(p, 2g + 1) = 1$.

Then it is clear that the genus of A is equal to g. Moreover, let us denote by A_n the constant field extension of A of degree n ($n = 1, 2, \ldots$). It is clear that A_n is the algebraic function field having $K_n = GF(q^n)$ as its exact field of constants.

Moreover, let us denote by h_n the class number of A_n, i.e., the order of the finite group of divisor classes of degree zero in A_n.

Then, A is said to be supersingular if $(p, h_n) = 1$ for all n. As is well known, the supersingularity is also stated as follows. The L-function of A is put in the form

$$L(u) = 1 + a_1 u + a_2 u^2 + \ldots + a_g u^g + \ldots + q^{g-1} a_g u^{2g-1} + q^g u^{2g}.$$

Then A is supersingular if and only if $a_1 = a_2 = \ldots = a_g = 0 \pmod{p}$ (Rosen[3], Stichtenoth[4]). Moreover, if we denote the L-function of A_n by

$$L_n(u) = 1 + a_1^{(n)} u + \ldots + a_g^{(n)} u^g + \ldots + q^{ng} u^{ng},$$

then, using the Newton's formulas, we have

*Department of Mathematics, College of General Education, Kyushu University, Fukuoka, Japan (810).
\[na_n = a_1^{(n)} a_{n-1} + a_2^{(n)} a_{n-2} + \ldots + a_{(n-1)}^{(n)} a_1 + a_1^{(n)} \]
\(n = 1, \ldots, g \).

It is then well-known that
\[a_1^{(n)} = N^{(n)} - q^n - 1. \]

So, if \(g < p \) and \(N^{(n)} \equiv 1 \pmod{p} \) \((n=1, \ldots, g) \), then \(a_1^{(n)} \equiv 0 \pmod{p} \) and hence \(a_n \equiv 0 \pmod{p} \) \((n=1, \ldots, g) \), i.e., \(A \) is supersingular.

On the other hand, let \(M = (a_{ij}) \) be the Hasse-Witt matrix of \(A \). Put
\[M(p^n) = (a_{ij} p^n) \quad \text{and} \quad L^n = M M(p^2) M(p^{n-1}) \]
\(n = 1, \ldots, g \), where \(r \) means the integer such that \(K^n = GF(q^n) = GF(p^r) \).

Then, it is well-known that the relation between \(A \) and \(N^{(n)} \) is given by
\[\text{Trace}(L^n) = 1 - N^{(n)} \]
where \(s \) denotes the residue class of an integer \(s \) modulo \(p \) and it is identified with the element of \(K \) (Manin [2], Washio [5]).

Therefore, summing up, we get the following lemma.

Lemma 1. If \(g < p \) and \(\text{Trace}(L^n) = 0 \) for \(1 \leq n \leq g \), then \(A \) is supersingular.

Moreover, we have known the following result about the Hasse-Witt matrix ([6]).

Lemma 2. Let \(M \) be the Hasse-Witt matrix with respect to the basis \(dx/y, x dx/y, \ldots, \]
\(x^{g-1} dx/y \) of the \(K \)-module of holomorphic differentials. Then, \(M = (a_{ij}) \) has at most one non-zero element in each row and in each column. Especially, for \(1 \leq i, j \leq g, a_{ij} \neq 0 \) if and only if \(i \equiv pj \pmod{2g+1} \).

2. Results. We will state the main results which will be proven in 3. Let \(K = GF(q) = GF(p^r) \)
because it is a finite field of characteristic \(p \neq 2 \) and let \(A = K(x, y) \)
be an algebraic function field over \(K \) defined by
\[y^2 = x^{2g+1} + a \]
\(a \neq 0, a \in K \),
where \(g \) means a positive integer such that \((p, 2g+1) = 1 \). Put \(f = 2g+1 \)
and assume that \(f \) is a power of a prime number.

Theorem 1. Let \(t \) be the order of \(p \) in the finite cyclic group \((\mathbb{Z}/f \mathbb{Z})^* = \mathbb{Z}/f \mathbb{Z} - \{0\} \). If \(g < p \) and \(t \) is even, then \(A \) is supersingular.

In the case of \(p \equiv -1 \pmod{f} \), it is evident that \(g < p \) and \(p^2 \equiv 1 \pmod{f} \) and so Theorem 1 leads to the following result.
COROLLARY 1. If $p \equiv -1 \pmod{f}$, then A is supersingular.

In the case that p is a primitive root modulo f, the order of p in $(\mathbb{Z}/f\mathbb{Z})^*$ is equal to $\varphi(f)$. Since f is a power of an odd prime, $\varphi(f)$ is even. Therefore, applying Theorem 1, we have the following result.

COROLLARY 2. If $g < p$ and p is a primitive root modulo f, then A is supersingular.

Clearly, if f is a prime number and q is a primitive root modulo f, then A is supersingular and $N^{(n)}$ is explicitly determined as follows.

THEOREM 2. f is a prime number and q is a primitive root modulo f if and only if $N^{(n)} = q^n + 1$ for $n = 1, \ldots, g$. In this case,

$$L(u) = 1 + q^{u\overline{u}^g}$$

where h means the class number of A.

3. Proofs. Let us now study the Hasse-Witt matrix M in the case that $f = 2g + 1$ is a power of an odd prime number.

LEMMA 3. Let t be the order of p in $(\mathbb{Z}/f\mathbb{Z})^*$. Assume that t is even and put $t = 2d$. If $rn \geq d$, then $L^n = 0$.

PROOF. We assume that $L^n \neq 0$. Then, because of

$$L^n = MM^{(p)} \cdots M^{(p^{rn-1})} = (a_{ij}) (a_{ij}^p) \cdots (a_{ij}^{p^{rn-1}}),$$

there exist some i_0, i_1, \ldots, i_{rn} ($l \leq i_0, i_1, \ldots, i_{rn} \leq g$) satisfying

$$a_{i_0i_1}a_{i_1i_2} \cdots a_{i_{rn-1}i_{rn}}^{p^{rn-1}} \neq 0.$$

So, by making use of Lemma 2, we get the congruences

$$i_0 \equiv pi_1 \pmod{f}, i_2 \equiv pi_2 \pmod{f}, \ldots, i_{rn-1} \equiv pi_{rn-1} \pmod{f}.$$

From $rn \geq d$, we see $i_0 \equiv p^d i_d \equiv i_d \pmod{f}$ and so $i_0 + i_d \equiv 0 \pmod{2g + 1}$. This is a contradiction to $1 \leq i_0, i_d \leq g$. Therefore we have $L^n = 0$.

COROLLARY. Assume that p is a primitive root modulo f. If $rn \geq g$, then $L^n = 0$. Especially, $L^{g} = 0$.

PROOF. The order of p in $(\mathbb{Z}/f\mathbb{Z})^*$ is equal to $\varphi(f)$ and $\varphi(f)$ is even. So, because of $rn \geq g \geq \varphi(f)/2$, Lemma 3 leads to $L^n = 0$.

LEMMA 4. Assume that the order of p in $(\mathbb{Z}/f\mathbb{Z})^*$ is even. Then all the diagonal elements of L^n are zero for $n = 1, 2, \ldots$.
PROOF. We assume that some diagonal element is not zero. Then, there exist some \(i_0, i_1, ..., i_{n-1} \) (\(1 \leq i_0, i_1, ..., i_{n-1} \leq g \)) satisfying

\[
a_{i_0, i_1}a_{i_1, i_2}p^{a_{i_2, i_3}}...a_{i_{n-1}, i_0}p^{a_{i_0, i_1}} \neq 0,
\]

and so

\[
i_0 \equiv p_{i_1} \pmod{e}, i_1 \equiv p_{i_2} \pmod{e}, ..., i_{n-1} \equiv p_{i_0} \pmod{e}.
\]

Then, by renumbering, we have infinitely many congruences \(i_k \equiv p_{i_{k+1}} \pmod{e} \) (\(k = 0, 1, 2, ... \)) with \(1 \leq i_0, i_1, ..., i_g \).

Thus, denoting by \(2d \), the order of \(p \) in \((\mathbb{Z}/f\mathbb{Z})^*\) we get \(i_k \equiv p^{-d}i_{k+1} \equiv -id \pmod{e} \) and hence \(i_0 + id \equiv 0 \pmod{e} \). This contradicts with \(1 \leq i_0, i_d \leq g \). So, all the diagonal elements of \(L_n \) are zero for all \(n \).

PROOF of Theorem 1. It is clear that the desired assertion follows at once from Lemmas 1 and 4.

PROOF of Theorem 2. The proof is done without using information about the Hasse-Witt matrix but with using quadratic characters. For \(n = 1, 2, ..., \) let \(\chi_n \) be the quadratic character of \(K_n = \text{GF}(q) \) and let \(d_n = (f, q^{n-1}) \).

It is then well-known that

\[
N(n) = q^n + 1 + c_n,
\]

where \(c_n = \sum_{b \in K_n} \chi_n(b^f + a) \) (Hasse[1]).

We assume that \(f \) is a prime number and \(q \) is a primitive root modulo \(f \). Then, for \(n = 1, 2, ..., g \), we get \(q^n \equiv 1 \pmod{f} \) and so \(d_n = 1 \).

Therefore, because of \(K_n \cap K_n^* = K_n^* \), we have

\[
c_n = \sum_{b \in K_n} \chi_n(b + a) = \sum_{b \in K_n} \chi_n(b) = 0
\]

and hence \(N(n) = q^n + 1 \) which is the required result.

Conversely, let us assume that \(N(n) = q^n + 1 \), i.e., \(c_n = 0 \) for \(n = 1, 2, ..., g \). Then \(c_n \) can be expressed in the form

\[
c_n = d_nu_n + \chi_n(a) \pmod{f}.
\]

This implies that

\[
d_nu_n = -\chi_n(a) = \pm 1.
\]

Therefore we obtain \(d_n = 1 \) for \(n = 1, 2, ..., g \).

Moreover, let \(k \) be a prime divisor of \(f = 2g + 1 \). Then, according to \((k, p) = 1 \), we see \((k, q^{n-1} - 1) = k \) and so \(k \mid d_{k-1} \). This means that \(k > g + 1 \). Hence \(k \) coincides with \(f \), i.e., \(f \) is a prime number.

Therefore, in view of \(q^n \equiv 1 \pmod{f} \) for \(n = 1, 2, ..., g \), it is clear that \(q \) is a primitive root modulo \(f \). In this case, we have \(a_1^{(n)} = c_n = 0 \) for \(n = 1, 2, ..., g \).

So, because of \(g < p \), the Newton's formulas lead to \(a_n = 0 \) for \(n = 1, 2, ..., g \).
Thus we get \(L(u) = 1 + q^g u^{2g} \) and so \(h = L(1) = 1 + q^g \). Hence Theorem 2 is completely proved.

References

