グループオートモフィズムに関する数理物理学的研究

タイトル: The Group of Homeomorphisms on a Connected 1-Manifold

著者: Karube, Takashi

引用: 長崎大学教育学部自然科学研究報告, vol.35, p.1-2; 1984

公開日: 1984-02-29

URL: http://hdl.handle.net/10069/32527

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
The Group of Homeomorphisms on a Connected 1-Manifold

Takashi KARUBE

Department of Mathematics, Faculty of Education
Nagasaki University, Nagasaki
(Received Oct. 31, 1983)

Abstract

The topological types of the spaces of homeomorphisms on paracompact Hausdorff connected 1-manifolds are classified.

1. Introduction.

A paracompact Hausdorff connected 1-manifold is homeomorphic to one of the following four spaces:
- R: the real line.
- R_+: a real half-line.
- S: a circle.
- I: a closed interval on R.

This is well-known—an easy proof is given in [5]. Let M be any one of the above four spaces with orientation, $H(M)$ the group of all homeomorphisms of M onto itself endowed with the compact open topology, and $H^+(M)$ the subspace of $H(M)$ which consists of orientation-preserving ones. Then

$H(I) = H^+(I) \cong Z_2 \times Z_2$ for $M = R$ (Anderson [1]),

$H(S) = H^+(S)$ for $M = I$ (Karube [4]),

and

$H(R_+) = H^+(R_+) \cong l_2$ (Karube [4]),

where l_2 is the Hilbert space of square-summable sequences, Z_2 the discrete space consisting of two points, \cong means being homeomorphic, and \times topological product.

In this note we consider $H(S)$.

2. The group of homeomorphisms on a circle.

Lemma 1 (Karube [4]). Let $[0,1]$ (resp. $(0,1)$) be the closed (resp. open) interval on R. Then $H^([0,1])$ and $H^((0,1))$ are isomorphic as topological
groups by the natural map. And so $H^*(R) = l_2$.

Considering the circle S a multiplicative topological group of complex numbers of norm 1, let T denote the subgroup of $H(S)$ consisting of all translations in the group S, P the subgroup of $H(S)$ consisting of all homeomorphisms which leave the identity 1 fixed, P^* the subgroup of P consisting of orientation-preserving ones, and Z_2 either the subgroup of $H(R)$ or of $H(S)$ consisting of the identity map and the reflexion.

Lemma 2. P^* and $H^*(S - \{1\})$ are isomorphic as topological groups by the natural map. And so $P^* = l_4$.

Proof. A modification of the proof of Lemma 1 ([4]) ensures that P^* is isomorphic to $H^*(S - \{1\})$ as topological groups. Since $S - \{1\}$ is homeomorphic to R, $H^* (S - \{1\}) = H^*(R)$. Hence $P^* = l_4$ by Lemma 1.

Theorem. $H(S) = T \times P^* \times Z_2 = T \times P^* \times Z_2$ and $(T, P^*) = (S, l_4)$.

Proof. Both T and P are closed subgroups and $H(S) = TP$, $T \cap P = \{1\}$. Whereas $H(S)$ is neither a direct product nor a semidirect product of T and P, the correspondence of $u \in H(S)$ to $(t_{u(1)}, t_{u(1)^{-1}})$ gives a homeomorphism between $H(S)$ and the product space $T \times P$ ——this owes to a remark of Keesling ([6], p. 15). The space T is homeomorphic to S. Since P^* is an open and closed subgroup of P, the space P is homeomorphic to $l_4 \times Z_2$ by Lemma 2. Consequently $H(S) = S \times l_4 \times Z_2$.

Remark. Another proof that $P = l_4 \times Z_2$ is obtained by the fact: let X be a locally connected, locally compact Hausdorff space, X^* the compactification of X by adding a point x_∞ to X, and $H(X^*, x_\infty)$ the subspace of $H(X^*)$ consisting of the mappings that leave the point x_∞ fixed, then $H(X^*, x_\infty) = H(X)$ ——this owes to Theorem 2 of [2] and Theorems 1, 3, and 4 of [3].

References

