<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>ラングリ大学教育学部自然科学研究報告 1983年</td>
</tr>
<tr>
<td>作者</td>
<td>長崎大学教育学部自然科学研究報告 1983年</td>
</tr>
<tr>
<td>ソノテキスト</td>
<td>長崎大学教育学部自然科学研究報告 1983年</td>
</tr>
<tr>
<td>キーワード</td>
<td>長崎大学教育学部自然科学研究報告 1983年</td>
</tr>
<tr>
<td>警戒</td>
<td>長崎大学教育学部自然科学研究報告 1983年</td>
</tr>
</tbody>
</table>
Bundle Structure of the Homeomorphism Groups of Locally Compact Homogeneous Spaces

Takashi KARUBE

Department of Mathematics, Faculty of Education
Nagasaki University, Nagasaki
(Received Oct. 31, 1982)

Abstract

The space $\mathcal{H}(X)$ of homeomorphisms on a locally compact homogeneous space X with a local cross-section is a bundle space over X. If X is separable metrizable and admits a nontrivial flow in addition, then $\mathcal{H}(X)$ is an l_1-manifold if and only if X is an ANR and $\mathcal{H}(X, a)$ is an l_1-manifold, where $\mathcal{H}(X, a)$ is the subspace of $\mathcal{H}(X)$ consisting of all those which leave a point a of X fixed. If X is a locally connected, compact metrizable homogeneous space that is an ANR and admits a local cross-section and a nontrivial flow, then $\mathcal{H}(X)$ is an l_1-manifold if and only if $\mathcal{H}(X-a)$ is an l_1-manifold, where $\mathcal{H}(X-a)$ is the space of homeomorphisms on $X-a (a \in X)$.

Introduction

McCarty [8] has shown that for a locally connected, locally compact Hausdorff homogeneous space X with a local cross-section, its full homeomorphism group $\mathcal{H}(X)$ with compact-open topology is a principal fiber bundle over X, and in particular if the set X is a locally connected, locally compact Hausdorff topological group then $\mathcal{H}(X)$ is a product bundle. And noting the existence of a natural exact homotopy sequence he studied homeotopy groups of several manifolds. On the other hand Keesling ([7], p. 15) has remarked that if X is a locally compact Hausdorff topological group then $\mathcal{H}(X)$ is homeomorphic to the product space $X \times \mathcal{H}(X, e)$ where e is the identity of X.

We consider first whether the McCarty's conclusion holds or not without the assumption "local connectedness". The answer is given in §2. In §1 we show that $\mathcal{H}(X)$ is a bundle space over X without the assumption "local connectedness". The same conclusion as this has been obtained in [5] already, and
yet here we try to generalize its premise and to improve the proof. The result
not only contains the Keesling’s remark as a special case but also yields
the natural exact homotopy sequence as in [8]. Next we treat applications of our
Theorem 1 in §3. There our concern now is mainly in several local connec-
tivities of \(\mathcal{H}(X) \), and particularly in local \(l_2 \) property. Our main results are
Theorems 3 and 4. These are slight generalizations of Theorems 2 and 3 in
[5] respectively.

Notations

\(\mathcal{H}(\ast) \) : The group of all homeomorphisms on a topological space \(\ast \), endowed
with the compact-open topology — only in §2 another topology is con-
sidered also.

\(\mathcal{H}(\ast, a) \) : The subspace of \(\mathcal{H}(\ast) \), consisting of all those which leave a point
\(a \) fixed \((a \in \ast) \).

\(X = G/H \) : The left coset space of a Hausdorff topological group \(G \) by a closed
subgroup \(H \) — in the paper we call such a space a homogeneous space.

\(\pi : \) The natural projection of \(G \) onto \(X \).

These notations will keep these meanings throughout the paper.

1. Bundle structure of \(\mathcal{H}(X) \).

We consider a bundle structure of \(\mathcal{H}(X) \) after clarifying two concepts used
in Theorem 1.

Let \(p \) be a continuous map of a space \(E \) into another space \(B \). We say that
the space \(B \) has a local cross-section \(f \) (at a point \(b \) in \(B \)) relative to \(p \), if \(f \)
is a continuous map from a neighborhood \(U \) of \(b \) into \(E \) such that \(pf(u) = u \) for each
\(u \in U \).

Let \(p, E \), and \(B \) be the same as above. The space \(E \) is called a bundle
space over the base space \(B \) relative to the projection \(p \) if there exists a space \(D \)
such that, for each \(b \in B \), there is an open neighborhood \(V \) of \(b \) in \(B \) together
with a homeomorphism

\[\phi_V : V \times D \to p^{-1}(V) \]

of \(V \times D \) onto \(p^{-1}(V) \) satisfying the condition

\[p\phi_V(v, d) = v \quad (v \in V, \quad d \in D) \]

This terminology is the same as in [3].

Theorem 1. Let \(X = G/H \) be a homogeneous space, \(a \) an arbitrary but fixed
point of \(X \), \(p \) the map of \(\mathcal{H}(X) \) to \(X \) defined by \(p(\psi) = \psi(a) \) \((\psi \in \mathcal{H}(X)) \),
and \(\mathcal{H}^* = \mathcal{H}(X)/\mathcal{H}(X, a) \) the left coset space (with quotient topology) of
Bundle Structure of the Homeomorphism Groups of Locally Compact Homogeneous Spaces

$\mathcal{H}(X)$ by $\mathcal{H}(X, a)$. Then we have the following:

(a) The map p is a continuous surjection. $\mathcal{H}(X) = L \circ \mathcal{H}(X, a)$ where L is the group of all left translations in X. And $L \cap \mathcal{H}(X, a)$ consists of just one element if and only if H coincides with the maximal normal subgroup of G which is contained in H.

(b) Assume that X has a local cross-section relative to the natural projection $\pi : G \to X$. Then

i) X has a local cross-section relative to p,

ii) X is homeomorphic to \mathcal{H}^* in a natural way, and p is a quotient map.

And so we can identify X with \mathcal{H}^*.

(c) Assume that X is locally compact and has a local cross-section relative to π. Then $\mathcal{H}(X)$ is a bundle space over the base space X relative to the projection p.

Proof. It is easy to see (a). We give proofs for (b) and (c).

(b), i) : For each element g of G, let $\omega(g)$ be the left translation in X by g. The map $\omega : g \to \omega(g)$ ($g \in G$) is a continuous (algebraic) homomorphism of G into $\mathcal{H}(X)$. Now let f be a local cross-section from a neighborhood U of a point x in X into G. For any fixed point g_0 of $\pi^{-1}(a)$, let q be the map of U into $\mathcal{H}(X)$ defined by

$$q(u) = \omega(f(u) \cdot g_0^{-1}) \quad (u \in U).$$

Put $W = q(U)$. Then both maps $q : U \to W$ and $\rho(W) : W \to U$ are homeomorphisms and inverses each other. In particular q is a local cross-section $U \to \mathcal{H}(X)$ relative to p.

(b) ii) : Let π^* be the natural projection of $\mathcal{H}(X)$ onto \mathcal{H}^*, and put $r = p \circ \pi^{-1}$. r is well-defined as a map $\mathcal{H}^* \to X$, and it is a continuous bijection. Now we will show that p is a quotient map. Let O be any nonempty subset of X such that $p^{-1}(O)$ is open in $\mathcal{H}(X)$. For any point x of O, take a local cross-section f at x relative to $\pi : G \to X$, which is defined on a neighborhood U of x in X. For such f and U, take the local cross-section $q : U \to \mathcal{H}(X)$ and the set W as in the proof of (b), i). Let $w = q(x)$ and take a neighborhood V of w in $\mathcal{H}(X)$ such that $V \supset p^{-1}(O)$. Then it is easy to see that $p(V \cap W)$ is a neighborhood of x in X, which is contained in O. Thus p is a quotient map. Therefore the map r is a homeomorphism of \mathcal{H}^* onto X.

(c) : For any point x of X, take an open neighborhood U of x and the set W as in the proof of (b), i). Let Φ be the map of the product space $W \times \mathcal{H}(X, a)$ onto $W \times \mathcal{H}(X, a)$ ($= p^{-1}(U)$) defined by $\Phi(w, \phi) = w \cdot \phi$. It is easy to see that Φ is a bijection. Since X is locally compact Hausdorff, Φ is continuous. To show the continuity of Φ^{-1}, in the following let w and ϕ be any element of W and $\mathcal{H}(X, a)$ respectively. The map that carries $w \cdot \phi$ to w is continuous, for $w = (q \circ p)(w \cdot \phi)$. The map that carries w to w^{-1} is continuous, for
\[w^{-1} = \omega \left([fp(w) \cdot g^{-1}]^{-1} \right). \]
Hence the map that carries \(w \cdot \phi \) to \(\phi \) is continuous, for
\[\phi = w^{-1} \cdot (w \cdot \phi). \]
Consequently \(\Phi^{-1} \) is continuous. Hence \(\Phi \) is a homeomorphism. From the fact we can show that \(\mathcal{H}(X) \) is a bundle space over the base space \(X \) relative to the projection \(p \).

Corollary 1 (J. Keesling [7]). If \(X \) is a locally compact Hausdorff topological group, then \(\mathcal{L} \) is isomorphic to \(X \) as topological groups and \(\mathcal{H}(X) \) is homeomorphic to the product space \(X \times \mathcal{H}(X, a) \).

Proof. In the case we can consider in the proof of Theorem 1 that
\[X = G / \{ e \} = U = W = \mathcal{L} = \omega (G), \]
where \(e \) is the identity of \(G \) and \(= \) means "is homeomorphic to". Then \(W \) is a topological group, and the map \(\Phi \) gives a homeomorphism of \(W \times \mathcal{H}(X, a) \) onto \(\mathcal{H}(X) \).

2. Fiber bundle structure of \(\mathcal{H}(X) \).

We use the following notations \(\tau_e \) and \(\tau_g \) only in this section.

- \(\tau_e \): The compact-open topology on \(\mathcal{H}(X) \).
- \(\tau_g \): The g-topology, named by R. Arens [1], on \(\mathcal{H}(X) \) as follows. If \(A \) and \(B \) are closed and open subsets, respectively, of \(X \), and either \(A \) or the complement of \(B \) in \(X \) is compact, then let \(\{ A, B \} \) be the set of \(\phi \in \mathcal{H}(X) \) such that \(\phi(A) \subseteq B \). The totality of sets \(\{ A, B \} \) are taken as a subbase for the g-topology.

Theorem 2. Let the topology \(\tau_g \) be given on \(\mathcal{H}(X) \) in place of \(\tau_e \). Then Theorem 1 holds, and moreover, under the assumption of (c) in Theorem 1, \(\mathcal{H}(X) \) is a principal fiber bundle over \(X \) with fiber and group \(\mathcal{H}(X, a) \).

Proof. For the latter assertion, noting the fact that \(\mathcal{H}(X) \) with \(\tau_g \) becomes a topological group ([1], Th. 3) and (b) in Theorem 1, standard application of the bundle structure theorem (cf. [9]) yields the conclusion.

Remark 1. Under the topology \(\tau_e \) the latter assertion in Theorem 2 is not true in general. In fact Braconnier [2] gave an example of a totally disconnected, non-compact, locally compact, abelian topological group \(X \) whose automorphism group \(\mathcal{A} \) is not a topological group under the topology \(\tau_e \). Since \(\mathcal{A} \subseteq \mathcal{H}(X, e) \) where \(e \) is the identity of \(X \), \(\mathcal{H}(X, e) \) is not a topological group under \(\tau_e \).

Remark 2. The topology \(\tau_g \) is finer than the topology \(\tau_e \) in general, and if \(X \) is a locally compact homogeneous space then \(\tau_g \) is the coarsest topology for \(\mathcal{H}(X, a) \) to become a topological group. Thus for the latter assertion in Theorem 2, \(\tau_g \) is the most desirable topology on \(\mathcal{H}(X) \).
COROLLARY 2. Let X be a homogeneous space with a local cross-section relative to π. If i) X is locally connected and locally compact, or ii) X is compact, then $\mathcal{H}(X)$ with topology τ_c is a principal fiber bundle over X with fiber and group $\mathcal{H}(X, a)$.

Proof. For the case i), by Theorems 3 and 4 of [1] and the fact $\tau_c \subseteq \tau_g$, τ_g coincides with τ_c on $\mathcal{H}(X)$. For the case ii) it is seen at once that τ_g coincides with τ_c. Hence Theorem 2 yields the conclusion.

In [8] the case i) above was used.

3. Some applications.

Hereafter it is assumed again that the compact-open topology is endowed on every set of homeomorphisms.

A. Homotopy property.

Here we follow the terminology of Hu [3]. As corollaries to Theorem 1 we have the following Corollaries 3 and 4 below.

COROLLARY 3. If X is a locally compact homogeneous space with a local cross-section relative to π, then $\mathcal{H}(X)$ is a fiber space over X relative to π.

Proof. From (c) in Theorem I and Theorem 4.1 in [3] on p. 65.

Thus the powerful machinery of homotopy theory of fiber spaces is available on such $\{ \mathcal{H}(X), X, \pi \}$.

B. Local property.

DEFINITION. A topological property P is called a finite product local property abbreviated FPL property, if i) a topological space has the property P then every open subspace has the property P, and ii) a product space $A \times B$ has the property P if and only if both spaces A and B have the property P.

REMARK 3. Among those local properties of $\mathcal{H}(M)$ studied for spaces M, for example, the following are FPL properties: locally connected, locally arcwise connected, LC, LCco, locally contractible, ANR. Note that each of these is a kind of property concerning local connectivity. On the other hand though local compactness is also a FPL property, it can be considered on $\mathcal{H}(M)$ only for non-standard spaces M. Because for a metric space M if $\mathcal{H}(M)$ is locally compact then $\mathcal{H}(M)$ is zero-dimensional (cf. [6]), while for a Hausdorff space M at least one point of which is locally Euclidean, $\mathcal{H}(M)$ is infinite-dimensional (cf. [4], Th. 1.5).

COROLLARY 4. Let X be a locally compact homogeneous space with a local cross-section relative to π. Then $\mathcal{H}(X)$ has a FPL property if and only if both X and $\mathcal{H}(X, a)$ have the FPL property.

Proof. From (c) in Theorem 1, $\mathcal{H}(X)$ is locally homeomorphic to the product space $X \times \mathcal{H}(X, a)$.
DEFINITION. A space is called an \(l_1 \)-manifold if it is separable metrizable space and is locally homeomorphic to \(l_1 \), i.e. the Hilbert space of square-summable sequences.

For about thirteen years now it has been conjectured that \(\mathcal{H}(M) \) is an \(l_1 \)-manifold for a compact metric \(n \)-manifold \(M \), and no affirmative answer has been obtained except the cases where \(n (=\dim M) \) is 1, 2, or \(\infty \) as far as we know.

THEOREM 3. Let \(X \) be a separable metrizable locally compact homogeneous space. Assume that \(X \) has a local cross-section relative to \(\pi \), and admits a nontrivial flow. Then \(\mathcal{H}(X) \) is an \(l_1 \)-manifold if and only if \(X \) is an ANR and \(\mathcal{H}(X, a) \) is an \(l_1 \)-manifold.

(Here "ANR" means absolute neighborhood retract for the class of all metrizable spaces.)

Proof. The same proof for Th. 2 in [5] is valid, though our assumption on local compactness of \(X \) is slightly generalized from Th. 2 in [5]. It is essentially an application of a theorem of Toruńczyk [10] to Corollary 4.

REMARK 4. As partial results of Corollary 4 and Theorem 3, for a locally compact homogeneous space \(X \) with a local cross-section, we get a criterion which local property must \(X \) have when we expect \(\mathcal{H}(X) \) to have the local property as stated in this section.

C. Relations between homeomorphism groups of a space and its punctured space.

The following results are slight generalizations from those in [5].

THEOREM 4. Let \(X \) be a locally connected, compact metrizable homogeneous space. Assume that \(X \) is an ANR and has a local cross-section relative to \(\pi \), and admits a nontrivial flow. Then \(\mathcal{H}(X) \) is an \(l_1 \)-manifold if and only if \(\mathcal{H}(X-a) \) is an \(l_1 \)-manifold.

COROLLARY 5. If \(X \) is a compact (positive dimensional) locally Euclidean homogeneous space with a local cross-section, then the same conclusion as in Theorem 4 holds.

As an application of Corollary 5, for several non-compact manifolds \(M \), we know that \(\mathcal{H}(M) \) are \(l_1 \)-manifolds (see [5]).

References

Bundle Structure of the Homeomorphism Groups of Locally Compact Homogeneous Spaces

