<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Topological Types of Paracompact Connected 1-manifolds</td>
</tr>
<tr>
<td>著者</td>
<td>Karube, Takashi</td>
</tr>
<tr>
<td>引用</td>
<td>長崎大学教育学部自然科学研究報告 vol.33, p.1-4; 1982</td>
</tr>
<tr>
<td>発行日</td>
<td>1982-02-28</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/32580</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Topological Types of Paracompact Connected 1-manifolds

Takashi KARUBE

Department of Mathematics, Faculty of Education
Nagasaki University, Nagasaki
(Received Oct. 31, 1981)

Abstract

A paracompact connected 1-manifold is homeomorphic to either an interval on the real line or a circle.

In this note we give a proof of the following

THEOREM. Any paracompact connected 1-manifold with or without boundary is homeomorphic to an interval on the real line or a circle.

By the hypothesis “paracompactness” non-standard spaces such as non-Hausdorff connected 1-manifold ([4], p. 225) and the so called “long line” ([4], p. 159) — it is not paracompact — are excluded. In the paper [2] we have used the theorem without proof to determine topological types of homeomorphism groups on paracompact connected 1-manifold. Here we give a proof of it in order to make sure. The proof is carried out in expectation that any paracompact connected 1-manifold will be obtained by joining at most countable number of (open, closed, or half-open) arcs without making branches.

Proof of Theorem. Let \(M \) be a paracompact connected 1-manifold with or without boundary, \(R \) the real line, \(R \), a half-open interval on \(R \), \(I \) a closed unit interval on \(R \), and \(S \) a circle.

Step 1°. \(M \) is metrizable by Smirnov’s metrization theorem ([4], p. 260). As a connected locally compact metrizable space, \(M \) is separable ([3], Appendix 2). Therefore \(M \) is second-countable. As a locally compact Hausdorff space with a countable basis having the topological dimension 1, \(M \) can be imbedded as a closed subset of the euclidean 3-space ([4], p. 315) — we consider \(M \) such a subspace hereafter.

Since \(M \) is second-countable 1-manifold, there exists a countable covering of \(M \), consisting of open neighborhoods \((U_i)\) and \((W_i)\) in \(M \) as follows: i) \(U_i=R \), \(\text{Cl}U_i=I \), and just one of the two end points of \(\text{Cl}U_i \) is a boundary point of \(M \).
Let x_i be the boundary point of M in U_i, then $x_i \sim x_j$ if $i \not\sim j$. ii) $W_k \approx R$, $\text{Cl} \ W_k \approx I$, and both of the two end points of $\text{Cl} \ W_k$ are not boundary points of M. Each W_k is not contained in any U_i. Here "\approx" means "homeomorphic to", and there are possibly no U‘s or no W’s.

Step 2° (Join of two U’s). If U_i intersects U_j for some different i and j, then $M = U_i \cup U_j \approx I$.

Proof. For convenience let $U_i = U, U_j = V, x_i = x, x_j = y$, and let a and b be the end point of $\text{Cl} \ U_i$ and $\text{Cl} \ U_j$ respectively which is not a boundary point of M. Take a point p of $U \cap V$. There exist open neighborhoods O_p of p in M such that $O_p \subset U \cap V$ and $O_p \approx R$. Let O^* be the union of all such O_p, then O^* is the maximum of open neighborhoods of p in M which are contained in $U \cap V$ and homeomorphic to R. In fact $p \in O^* \subset (\text{open arc } xa) \approx R$ and O^* is open and connected, and so O^* is homeomorphic to an open interval on R. We show that $\text{Cl} \ O^* \approx I$ and end points of $\text{Cl} \ O^*$ are $\{a,b\}$. Noting that $\text{Cl} \ O^* \subset (\text{closed arc } xa) \approx I$, we see $\text{Cl} \ O^*$ is homeomorphic to a closed interval of I. Let q and r be the end points of $\text{Cl} \ O^*$. Each of q and r differs from x and y. Changing notations q, r if necessary, let the orientations of qr and yb on the arc yb coincide. We can show that the orientations of qr and ax are the same on the arc xa. If not, we would arrive at a contradiction using the maximum property of O^* and the fact that q is an inner point of arc xp, arc yp, and 1-manifold M respectively. Moreover it follows that $q=a$ and $r=b$. In the result, $U \cup V$ is the union of three arcs $xb, ba,$ and ay only adjacent arcs of which have a common end point. Noting that M is connected and the property of U and V, we have $M = U \cup V$.

Step 3° (Join of U_i and W_k). If U_i intersects W_k, then $U_i \cup W_k \approx R$, $\text{Cl} (U_i \cup W_k) \approx I$, and just one of the end points of $\text{Cl} (U_i \cup W_k)$ is a boundary point of M.

Proof. The similar proof as in step 2° is valid.

Step 4° (Join of two W’s). If W_k intersects W_l, then exactly one of the following conclusions holds: i) $W_k \cup W_l \approx R$, $\text{Cl} (W_k \cup W_l) \approx I$, and no end points of $\text{Cl} (W_k \cup W_l)$ are boundary points of M ii) $W_k \cup W_l \approx S$. There are no U’s and no another W’s, and $M \approx S$.

Proof. Let c_k and d_k (resp. c_l and d_l) be two end points of $\text{Cl} \ W_k$ (resp. $\text{Cl} \ W_l$). For any fixed point p of $W_k \cap W_l$, there exists the maximum O^* among all open neighborhoods of p in M which are contained in $W_k \cap W_l$ and homeomorphic to R. Then $\text{Cl} \ O^* \approx I$. Let p and q be the end points of $\text{Cl} \ O^*$. We can suppose that both of the orientations $c_k d_k$ and $c_l d_l$ coincide with that of qr on the arc qr. Then $q=c_k$ or c_l, and $r=d_k$ or d_l. In the case where $O^* = W_k \cap W_l$ the conclusion i) follows. If $O^* \approx W_k \cap W_l$, then there exists another set O^{**} in $W_k \cap W_l$ which has the similar properties as the above O^*. In this case $W_k \cap W_l = O^* \cup O^{**}$, and $M = W_k \cup W_l \approx S$.

Takashi Karube
Step 5° (Join of a countably infinite number of W's, whose union is not homeomorphic to a circle). Let \(\{ W'_k | k = 1, 2, \ldots \} \) be an expanding sequence of open neighborhoods in \(M \) such that \(W'_k = R \), \(\text{Cl}(W'_k) = I \), and no end points of \(\text{Cl}(W'_k) \) are boundary points of \(M \), then \(\bigcup_{k=1}^{\infty} W'_k = R \).

Proof. Let \(X = \bigcup_{k=1}^{\infty} W'_k \). We can naturally define a simple order on \(X \). \(X \) is non-degenerate and has no smallest and no largest element. Give \(X \) the induced order topology, and it coincides with the subspace topology. Then \(X \) is second-countable, locally compact, connected, and merizable. Let \(a \) and \(b \) be any two fixed points outside \(X \), and let \(X^* = X \cup \{a, b\} \). Define a simple order on \(X^* \) such that it is the same on \(X \) and \(a < x < b \) for every \(x \in X \). \(a \) (resp. \(b \)) is the smallest (resp. largest) element of \(X^* \). Give \(X^* \) the induced order topology, then \(X^* \) is connected and only two points \(a, b \) are the non-cut points of \(X^* \). We can see that \(X^* \) is compact as follows. Let \(\{V_\lambda | \lambda \in \Lambda \} \) be any open covering of \(X^* \). For some \(\mu, \nu \in \Lambda \), \(a \in V_\mu \) and \(b \in V_\nu \). Take \(x, y \in X \) such that \([a, x] \subseteq V_\mu \), \((y, b] \subseteq V_\nu \), and \(x < y \). \([x, y] \) is connected. Since \(X \) is separable and locally euclidean, there exist a countable dense subset \(\{p_n\} \) of \(X \) and, for each \(p_n \) an open interval \(O(n) \) containing \(p_n \) whose closure in \(X \) is compact. By connectedness of \([x, y] \), there exists a finite subcollection of \(\{O(n) \cap [x, y] | n = 1, 2, \ldots \} \) which is a simple chain from \(x \) to \(y \), say \(O(n_1) \cap [x, y], \ldots, O(n_m) \cap [x, y] \). We can prove that these sets covers \([x, y] \). Thus \([x, y] \subseteq (\text{Cl}(O(n_1)) \cup \ldots \cup (\text{Cl}(O(n_m)))) \), and so \([x, y] \) is compact. Therefore we can cover \([x, y] \) by a finite number of \(V \)'s. Hence \(X^* \) is compact. Now we can see that \(X^* \) is metrizable also. As a non-degenerate, compact, connected, metrizable space, \(X^* \) is homeomorphic to \(I \) ([1], p. 168). Since two end points \(a, b \) of \(X^* \) are the only non-cut points of \(X^* \), \(X = R \).

Step 6° (Settlement of our proof).

The case where \(M \) is a 1-manifold without boundary. Since \(M \) is connected, rearranging \(\{ W_k \} \) if necessary, we can suppose that \(W_1 \cup \ldots \cup W_k \) intersects \(W_{k+1} \), for every \(k \). Let \(W'_k = W_1 \cup \ldots \cup W_k \) \((k = 1, 2, \ldots) \). Then by step 4°, exactly one of the following conclusions holds:

i) For some \(n \), \(W_{n+1}, W_{n+2}, \ldots \) do not exist, and \(M = W'_n \). In this case \(M \) is homeomorphic to either \(R \) or \(S \).

ii) \(\{W'_{k'} | k' = 1, 2, \ldots \} \) is an expanding infinite sequence of open neighborhoods as in step 5°. And \(M = R \).

The case where the boundary of \(M \) consists of only one point. If there are no \(W \)'s, then \(M = U_1 = R \). If any \(W \) exists, we can suppose that \(U_1 \cup W_1 \cup W_2 \cup \ldots \cup W_k \) intersects \(W_{k+1} \), for every \(k \). Let \(U'_1 = U_1 \), \(U'_{k+1} = U_1 \cup W_1 \cup \ldots \cup W_k \) \((k = 1, 2, \ldots) \). By step 4° we see that \(\bigcup_{k=1}^{m} W_k = S \) for some \(m \), \(\bigcup_{k=1}^{n} W_k = R \) for some \(n \), or not. The first case can not occur. And in the third case, by the similar proof as in
step 5° (adding one point to $\cup U_k$) we can see that $M = \cup U_k \approx R$.

The case where the boundary of M contains at least two points ---. If any two U_i and U_j ($i \neq j$) intersect, then by step 2° $M = U_i \cup U_j \approx I$ and there is no other U’s and W’s. Now suppose that no two U’s intersect. Since M is connected, $M - \cup U_i$ is nonempty and there exists at least one W_k. U_l (resp. U_r) intersects W_l (resp. W_r) for some l (resp. m). Take points z_1 of $U_l \cap W_l$ and z_2 of $U_r \cap W_m$. There exists a finite subcollection of \{${U_i}$\} U \{${W_k}$\} which is a simple chain from z_1 to z_2. There is no U_j ($j \neq 1, 2$) between end links U_1 and U_2 in the chain, for if there was a U_j between them, applying step 3° and step 2°, we would have $M \approx I$ without using U_1, this is a contradiction. Consequently applying step 3° and step 2° again to the chain we can see that $M \approx I$ and there is no U’s other than U_1 and U_2.

References