<table>
<thead>
<tr>
<th>Title</th>
<th>Topological Types of Paracompact Connected 1-manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Karube, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学教育学部自然科学研究報告 vol.33, p.1-4; 1982</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1982-02-28</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/32580</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE

http://naosite.lb.nagasaki-u.ac.jp
Topological Types of Paracompact Connected 1-manifolds

Takashi KARUBE

Department of Mathematics, Faculty of Education
Nagasaki University, Nagasaki
(Received Oct. 31, 1981)

Abstract

A paracompact connected 1-manifold is homeomorphic to either an interval on the real line or a circle.

In this note we give a proof of the following

THEOREM. Any paracompact connected 1-manifold with or without boundary is homeomorphic to an interval on the real line or a circle.

By the hypothesis "paracompactness" non-standard spaces such as non-Hausdorff connected 1-manifold ([4], p. 225) and the so called "long line" ([4], p. 159) —— it is not paracompact —— are excluded. In the paper [2] we have used the theorem without proof to determine topological types of homeomorphism groups on paracompact connected 1-manifold. Here we give a proof of it in order to make sure. The proof is carried out in expectation that any paracompact connected 1-manifold will be obtained by joining at most countable number of (open, closed, or half-open) arcs without making branches.

Proof of Theorem. Let M be a paracompact connected 1-manifold with or without boundary, R the real line, R, a half-open interval on R, I a closed unit interval on R, and S a circle.

Step 1°. M is metrizable by Smirnov’s metrization theorem ([4], p. 260). As a connected locally compact metrizable space, M is separable ([3], Appendix 2). Therefore M is second-countable. As a locally compact Hausdorff space with a countable basis having the topological dimension 1, M can be imbedded as a closed subset of the euclidean 3-space ([4], p. 315) —— we consider M such a subspace hereafter.

Since M is second-countable 1-manifold, there exists a countable covering of M, consisting of open neighborhoods (U_i) and (W_k) in M as follows: i) $U_i=\mathbb{R}$, CI$U_i=I$, and just one of the two end points of CIU_i is a boundary point of M.
Let x_i be the boundary point of M in U_i, then $x_i \sim x_j$ if $i \sim j$. ii) $W_k \sim R$, $\text{Cl} W_k \sim I$, and both of the two end points of $\text{Cl} W_k$ are not boundary points of M. Each W_k is not contained in any U_i. Here "\sim" means "homeomorphic to", and there are possibly no U's or no W's.

Step 2° (Join of two U's). If U_i intersects U_j for some different i and j, then $M = U_i \cup U_j \sim I$.

Proof. For convenience let $U_i = U$, $U_j = V$, $x_i = x$, $x_j = y$, and let a and b be the end point of $\text{Cl} U_i$ and $\text{Cl} U_j$ respectively which is not a boundary point of M. Take a point p of $U \cap V$. There exist open neighborhoods O_α of p in M such that $O_\alpha \subset U \cap V$ and $O_\alpha \sim R$. Let O^* be the union of all such O_α, then O^* is the maximum of open neighborhoods of p in M which are contained in $U \cap V$ and homeomorphic to R. In fact $p \in O^* \subset (\text{open arc } xa) \sim R$ and O^* is open and connected, and so O^* is homeomorphic to an open interval on R. We show that $\text{Cl} O^* \sim I$ and end points of $\text{Cl} O^*$ are $\{a, b\}$. Noting that $\text{Cl} O^* \subset (\text{closed arc } xa) \sim I$, we see $\text{Cl} O^*$ is homeomorphic to a closed interval of I. Let q and r be the end points of $\text{Cl} O^*$. Each of q and r differs from x and y. Changing notations q, r if necessary, let the orientations of \overrightarrow{qr} and \overrightarrow{yb} on the arc yb coincide. We can show that the orientations of \overrightarrow{qr} and \overrightarrow{ax} are the same on the arc xa. If not, we would arrive at a contradiction using the maximum property of O^* and the fact that q is an inner point of arc xp, arc yp, and 1-manifold M respectively. Moreover it follows that $q = a$ and $r = b$. In the result, $U \cup V$ is the union of three arcs xb, ba, and ay only adjacent arcs of which have a common end point. Noting that M is connected and the property of U and V, we have $M = U \cup V$.

Step 3° (Join of U_i and W_k). If U_i intersects W_k, then $U_i \cup W_k \sim R$, $\text{Cl} (U_i \cup W_k) \sim I$, and just one of the end points of $\text{Cl} (U_i \cup W_k)$ is a boundary point of M.

Proof. The similar proof as in step 2° is valid.

Step 4° (Join of two W's). If W_k intersects W_l, then exactly one of the following conclusions holds: i) $W_k \cup W_l \sim R$, $\text{Cl} (W_k \cup W_l) \sim I$, and no end points of $\text{Cl} (W_k \cup W_l)$ are boundary points of M. ii) $W_k \cup W_l \sim S$. There are no U's and no another W's, and $M \sim S$.

Proof. Let c_k and d_k (resp. c_l and d_l) be two end points of $\text{Cl} W_k$ (resp. $\text{Cl} W_l$). For any fixed point p of $W_k \cap W_l$, there exists the maximum O^* among all open neighborhoods of p in M which are contained in $W_k \cap W_l$ and homeomorphic to R. Then $\text{Cl} O^* \sim I$. Let q and r be the end points of $\text{Cl} O^*$. We can suppose that both of the orientations $\overrightarrow{c_k d_k}$ and $\overrightarrow{c_l d_l}$ coincide with that of \overrightarrow{qr} on the arc qr. Then $q = c_k$ or c_l, and $r = d_k$ or d_l. In the case where $O^* \sim W_k \cap W_l$, the conclusion i) follows. If $O^* \sim W_k \cap W_l$, then there exists another set O^{**} in $W_k \cap W_l$ which has the similar properties as the above O^*. In this case $W_k \cap W_l = O^* \cup O^{**}$, and $M = W_k \cup W_l \sim S$.
Step 5 (Join of a countably infinite number of W's, whose union is not homeomorphic to a circle). Let $\{W'_k \mid k=1,2,\ldots\}$ be an expanding sequence of open neighborhoods in M such that $W'_k \supseteq R$, $\text{Cl}(W'_k) = I$, and no end points of $\text{Cl}W'_k$ are boundary points of M, then $\bigcup_{k=1}^{\infty} W'_k = R$.

Proof. Let $X = \bigcup_{k=1}^{\infty} W'_k$. We can naturally define a simple order on X. X is non-degenerate and has no smallest and no largest element. Give X the induced order topology, and it coincides with the subspace topology. Then X is second-countable, locally compact, connected, and merizable. Let a and b be any two fixed points outside X, and let $X^* = X \cup \{a, b\}$. Define a simple order on X^* such that it is the same on X and $a < x < b$ for every $x \in X$. a (resp. b) is the smallest (resp. largest) element of X^*. Give X^* the induced order topology, then X^* is connected and only two points a, b are the non-cut points of X^*. We can see that X^* is compact as follows. Let $\{V_{\lambda} \mid \lambda \in \Lambda\}$ be any open covering of X^*. For some $\mu, \nu \in \Lambda$, $a \in V_{\mu}$ and $b \in V_{\nu}$. Take $x, y \in X$ such that $[a, x] \subseteq V_{\mu}$, $(y, b] \subseteq V_{\nu}$, and $x < y$. $[x, y]$ is connected. Since X is separable and locally euclidean, there exist a countable dense subset $\{p_n\}$ of X and, for each p_n an open interval $O(n)$ containing p_n whose closure in X is compact. By connectedness of $[x, y]$, there exists a finite subcollection of $\{O(n) \cap [x, y] \mid n=1, 2, \ldots\}$ which is a simple chain from x to y, say $O(n_1) \cap [x, y], \ldots, O(n_k) \cap [x, y]$. We can prove that these sets covers $[x, y]$. Thus $[x, y] \subseteq (\text{Cl}O(n_1) \cup \cdots \cup \text{Cl}O(n_k))$, and so $[x, y]$ is compact. Therefore we can cover $[x, y]$ by a finite number of V's. Hence X^* is compact. Now we can see that X^* is metrizable also. As a non-degenerate, compact, connected, metrizable space, X^* is homeomorphic to I ([1], p. 168). Since two end points a, b of X^* are the only non-cut points of X^*, $X = R$.

Step 6 (Settlement of our proof).

The case where M is a 1-manifold without boundary—. Since M is connected, rearranging $\{W_k\}$ if necessary, we can suppose that $W_1 \cup \cdots \cup W_k$ intersects W_{k+1}, for every k. Let $W'_k = W_1 \cup \cdots \cup W_k (k=1, 2, \ldots)$. Then by step 4, exactly one of the following conclusions holds:

i) For some n, W_{n+1}, W_{n+2}, \ldots do not exist, and $M = W'_n$. In this case M is homeomorphic to either R or S.

ii) $\{W'_k \mid k=1,2,\ldots\}$ is an expanding infinite sequence of open neighborhoods as in step 5. And $M = R$.

The case where the boundary of M consists of only one point—. If there are no W's, then $M = U_1 = R$. If any W's exists, we can suppose that $U_1 \cup W_1 \cup W_2 \cup \cdots \cup W_k$ intersects W_{k+1}, for every k. Let $U'_1 = U_1$, $U'_{k+1} = U_1 \cup W_1 \cup \cdots \cup W_k (k=1, 2, \ldots)$. By step 4 we see that $\bigcup_{k=1}^{m} W_k = S$ for some m, $\bigcup_{k=1}^{n} W_k = R$ for some n, or not.

The first case can not occur. And in the third case, by the similar proof as in
step 5° (adding one point to $\cup U_k$) we can see that $M = \cup U_k \approx R$.

The case where the boundary of M contains at least two points. If any two U_i and U_j ($i \neq j$) intersect, then by step 2° $M = U_i \cup U_j \approx I$ and there is no other U's and W's. Now suppose that no two U's intersect. Since M is connected, $M - \cup U_i$ is nonempty and there exists at least one W_k. U_1 (resp. U_2) intersects W_l (resp. W_m) for some l (resp. m). Take points z_1 of $U_i \cap W_l$ and z_2 of $U_j \cap W_m$. There exists a finite subcollection of $\{U_i\} \cup \{W_k\}$ which is a simple chain from z_1 to z_2. There is no U_j ($j \neq 1, 2$) between end links U_i and U_j in the chain, for if there was a U_j between them, applying step 3° and step 2°, we would have $M \approx I$ without using U_i, this is a contradiction. Consequently applying step 3° and step 2° again to the chain we can see that $M \approx I$ and there is no U’s other than U_i and U_j.

References