Comparison of γδ T cell responses and farnesyl diphosphate synthase inhibition in tumor cells pretreated with zoledronic acid

Atif S. M. Idrees¹, Tomoharu Sugie¹, Chiyomi Inoue², Kaoru Murata-Hirai², Haruki Okamura³, Craig T. Morita⁴, Nagahiro Minato⁵, Masakazu Toi¹, and Yoshimasa Tanaka²,⁵,⁶,⁷

¹Department of Surgery, ²Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan, ³Department of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Japan, ⁴Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Health Care System, Iowa City, IA U.S.A., ⁵Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan, ⁶Center for Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.

⁷Correspondence: Dr. Yoshimasa Tanaka, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan,
Tel: +81-95-819-2890, Fax: +81-95-819-2420,

Email: ystanaka@nagasaki-u.ac.jp

Number of figures: 4

Number of tables: 0

Quantity of supporting information: 4

Key words: isopentenyl diphosphate, lymphoma, myeloid cells, nitrogen-containing bisphosphonate, tumor, γδ T cells, cancer immunotherapy
Summary

Exposing human tumor cells to nitrogen-containing bisphosphonates (N-BPs), such as zoledronic acid (Zol), greatly increases their susceptibility to killing by γδ T cells.

Based on this finding and other studies, cancer immunotherapy using γδ T cells and N-BPs has been studied in pilot clinical trials and has shown benefits. Although Zol treatment can render a wide variety of human tumor cells susceptible to γδ T cell killing, there has not been a systematic investigation to determine which types of tumor cells are the most susceptible to γδ T cell-mediated cytotoxicity. In this study, we determined the Zol concentrations required to stimulate half maximal TNF-α production by γδ T cells cultured with various tumor cell lines pretreated with Zol and compared these concentrations with those required for half maximal inhibition of farnesyl diphosphate synthase (FPPS) in the same tumor cell lines. The inhibition of tumor cell growth by Zol was also assessed. We find that FPPS inhibition strongly correlates with γδ T cell activation, confirming that the mechanism underlying γδ T cell activation by Zol is isopentenyl diphosphate (IPP) accumulation due to FPPS blockade. In addition, we showed that γδ TCR-mediated signaling correlated with γδ T cell TNF-α production and cytotoxicity. Some lymphoma, myeloid leukemia, and
mammary carcinoma cell lines were relatively resistant to Zol treatment suggesting that assessing tumor sensitivity to Zol may help select those patients most likely to benefit from immunotherapy with \(\gamma\delta\) T cells.
Abbreviations

FPPS, farnesyl diphosphate synthase;

IPP, isopentenyl diphosphate;

N-BP, nitrogen-containing bisphosphonate;

NK, natural killer;

TCR, T cell receptor;

Zol, zoledronic acid.
Introduction

The majority of human peripheral blood γδ T cells express Vγ2 (also termed Vγ9) and Vδ2 T cell receptor genes\(^1\)-\(^4\) and display cytotoxicity against a wide spectrum of tumor cells.\(^5\)\(^6\) γδ T cells kill tumors cells through recognition by γδ T cell receptors (TCR)\(^7\)-\(^8\) as well as by natural killer (NK) receptors.\(^9\)-\(^12\) Recent clinical trials demonstrated that zoledronic acid (Zol), a nitrogen-containing bisphosphonate (N-BP), provided clinical benefits when added to standard therapies for patients with mammary carcinoma and multiple myeloma.\(^13\)-\(^17\) Because N-BPs inhibit farnesyl diphosphate synthase (FPPS) in tumor cells and increase the intracellular level of isopentenyl pyrophosphate (IPP), leading to the activation of γδ T cells expressing Vγ2Vδ2 TCRs,\(^18\)-\(^20\) it has been suggested that γδ T cells might contribute to the therapeutic effect of Zol in cancer treatment.\(^21\)

Although in vitro and in vivo studies have demonstrated that Zol renders many types of tumor cells susceptible to γδ TCR-mediated cytotoxicity,\(^5\),\(^15\),\(^22\)-\(^29\) there has not been a systematic examination to determine if it would be possible to predict which types of tumors would be most likely to respond to immunotherapy with γδ T cells and Zol. In this study, we have tested a variety of cancer cell lines to determine the Zol concentration required to inhibit FPPS by 50\% (as assessed by rap1A prenylation) and compared these
concentrations to those required to stimulate half maximal TNF-α production by γδ T cells cultured with Zol-pretreated tumor cells. We find that the Zol concentrations required for FPPS inhibition closely correlates with those required for stimulation of TNF-α production by γδ T cells but not with the Zol concentrations required to inhibit tumor cell proliferation. Additionally, γδ TCR-mediated signaling correlated with FPPS inhibition.
Materials and Methods

Inhibition of FPPS

Zol was purchased from Novartis Pharmaceuticals Corp. (Basel, Switzerland) and converted to its sodium salt using a Na\(^+\) form of Dowex 50W\(\times\)8 (Muromachi Kogyo Kaisha Ltd., Chuo-ku, Tokyo, Japan). Zol inhibition of FPPS was determined by assessing the degree of rap1A prenylation (geranylgeranylation) on Western blotting with varying concentrations of Zol as described in Fig. S1.

Derivation of \(\gamma^2\delta^2\) T cell lines

Recombinant human IL-2 was kindly provided by Shionogi Pharmaceutical Co., Ltd. (Chuo-ku, Osaka, Japan). After institutional review board approval and with written informed consent, peripheral blood mononuclear cells (PBMC) were purified and stimulated with 5 \(\mu\)M Zol and 100 U/ml IL-2 for 10 days as described in Fig. S2 to derive \(\gamma^2\delta^2\) T cell lines.

Flow cytometry
Flow cytometric analyses were performed using a FACSCalibur system (Becton Dickinson, Franklin Lakes, NJ). The gating strategy is detailed in Fig. S2.

Cytokine production

Tumor cells listed in Table S1 were grown, harvested, and resuspended at 1×10^6 cells/0.5 ml in 10-fold serial dilutions of Zol in complete RPMI1640 media (Sigma, St. Louis, MO) supplemented with 10% fetal calf serum (Sigma), 10^{-5} M 2-mercaptoethanol (Nacalai Tesque Inc., Nakagyo-ku, Kyoto, Japan), 100 IU/ml penicillin (Meiji Seika Kaisha, Ltd., Chuo-ku, Tokyo, Japan), and 100 µg/ml streptomycin (Meiji Seika Kaisha). After incubation at 37°C with 5% CO$_2$ for 4 h, the cells were washed three times with 5 ml of the medium and resuspended in 0.5 ml of the same medium. A total of 0.1 ml (2×10^5 cells/well) of the tumor cell suspension was placed on flat-bottomed 96-well plates and 0.1 ml of γδ T cells (2×10^5 cells/well) was added (Fig. S2). The plates were incubated at 37°C with 5% CO$_2$ for 16 h and the culture supernatants stored overnight at -80°C. The samples were then thawed and TNF-α concentrations determined by ELISA (Peprotech, Rocky Hill, NJ) using an ARVO spectrophotometer (PerkinElmer, Foster City, CA). All experiments were performed in triplicate.
Tumor cell growth inhibition assay

Tumor cells listed in Table S1 were grown, harvested, and resuspended at 1×10^4 cells/ml in complete RPMI1640 medium. A total of 0.05 ml of the cell suspension was added to flat bottomed 96-well plates, followed by 0.05 ml of 3-fold serial dilutions of Zol. After incubation at 37°C with 5% CO$_2$ for 4 h, the supernatant was removed and Zol-free medium added. After an additional 16 h, 0.1 ml of the CellTiter-Glo reagent (Promega Corp.) was added and the luminescence due to released ATP was measured using an ARVO luminometer (PerkinElmer). All experiments were performed in triplicate.

γδ TCR Jurkat Transfectant and IL-2 assay

β$^-$ Jurkat cells expressing V$\gamma2$V$\delta2$ TCR were prepared and IL-2 release assayed as described previously.$^{(8)}$ Briefly, 2×10^5 TCR transfectant cells in 100 µl were mixed with 2×10^5 tumor cells in 100 µl. Tumor cells were pretreated with serial dilutions of Zol. After 16 h, the supernatants were collected and assayed for IL-2 by their ability to support the proliferation of the IL-2-dependent CTLL-2 cell line. CTLL-2 cell numbers were determined using the CellTiter-Glo reagent as described above. All experiments were
performed in triplicate.

\(\gamma \delta \) T cell Cytotoxicity assay

Tumor cells \((1 \times 10^6)\) were treated with serial dilutions of Zol for 4 h and then labeled with 100 \(\mu \)Ci of Na\(^{51}\)Cr for 1 h. \(\gamma \delta \) T cells were incubated with the labeled tumor cells \((1 \times 10^4\) cells/well) at an effector to target ratio of 40:1. Specific \(^{51}\)Cr release was determined as described previously.\(^{(5)}\)
Results

High Zol concentrations were required for FPPS inhibition in many lymphoma and some myeloid leukemia cell lines in vitro

Zol inhibits FPPS rendering tumor cells susceptible to γδ TCR-mediated lysis.(5,30) Zol inhibition of FPPS results in intracellular accumulation of upstream metabolites such as IPP.(18-20) Downstream metabolites, such as farnesyl diphosphate and geranylgeranyl diphosphate, are depleted leading to the accumulation of unprenylated Rap1A, a small G protein required for cellular adhesion.(31) The accumulation of unprenylated Rap1A was therefore used as a measure of FPPS inhibition. The Zol concentrations required for half maximal inhibition (IC\textsubscript{50}) of Rap1A prenylation were determined by culturing tumor cell lines with Zol for 16 h and measuring the level of unprenylated Rap1A by Western blotting (Fig. S1). The proportion of tumor cell lines with Zol IC\textsubscript{50} of 100 µM or greater was 85.7% for lymphoma, 57.1% for myeloid leukemia, and 28.6% for mammary carcinoma cell lines but only 5.8% for the other 52 tumor cell lines (Fig. 1). Of the 52 other tumor cell lines examined, 9 had IC\textsubscript{50} values less than 10 µM, including the 786-0W and ACHN renal cell carcinoma, the EJ-1 and T24 bladder carcinoma, the MZChA2 bile duct carcinoma, the
TGBC1TKB gallbladder carcinoma, the HuO osteosarcoma, the PC-3 prostatic carcinoma, and the HT-1080 fibrosarcoma cell line.

High Zol concentrations are required for γδ T cell activation by Zol-pretreated lymphoma and myeloid leukemia cell lines in vitro

We next determined the Zol concentrations required to stimulate half maximal TNF-α secretion (EC50) by γδ T cells (Fig. S2) in response to tumor cell lines incubated with Zol (Table S1). The EC50 values for most tumor cell lines were between 10 µM and 100 µM (Fig. 2). The proportion of tumor cell lines with EC50 values of 100 µM or greater was 85.7% for lymphoma, 42.9% for myeloid leukemia, and 42.9% for mammary carcinoma cell lines. In contrast, only 3.8% of the other 52 tumor cell lines had EC50 values greater than 100 µM. Although both the Daudi Burkitt’s lymphoma and the RPMI 8226 plasmacytoma cell lines stimulate γδ T cells through their γδ TCRs, most other lymphoma and myeloid leukemia cell lines stimulated only poor γδ T cell responses in vitro even with exposure to Zol. Some mammary carcinoma cell lines also required high concentrations of Zol to elicit TNF-α responses by γδ T cells. The requirement for relatively high concentrations of Zol for γδ T cell activation exhibited by some lymphoma, myeloid
leukemia, and mammary carcinoma cell lines correlated with the greater Zol concentrations (EC50) required for FPPS inhibition by these cell lines. In contrast, 13 out of 73 tumor cell lines had EC50 values less than 10 µM, including the ACHN and UOK111 renal cell carcinoma, the EJ-1 bladder carcinoma, the GCIY, KATO III, MKN28, and MKN74 gastric carcinoma, the Saos-2 osteosarcoma, the DLD-1 colorectal carcinoma, the C32TG and G-361 melanoma, the PC-3 prostatic carcinoma, and the HT-1080 fibrosarcoma cell lines.

Inhibition of FPPS was closely correlated with TNF-α production by γδ T cells

To assess the degree of correlation between FPPS inhibition and γδ T cell activation, we compared Zol concentrations for FPPS inhibition (IC50) to those for γδ T cell activation (EC50) for each of the tumor cell lines. As shown in Fig. 3, the Zol concentrations required for FPPS inhibition (prenylation inhibition) were well correlated with those required for γδ T cell production of TNF-α. For example, the MOLT-3 lymphoma required Zol concentrations of 500 µM for prenylation inhibition and 530 µM for TNF-α production (Fig. 3A). Similarly, BxPC-3 required 55 µM for prenylation inhibition and 58 µM for TNF-α production (Fig. 3G).
Direct cytotoxicity of Zol on tumor cell lines

Because some lymphoma, myeloid leukemia, and mammary carcinoma cell lines were relatively resistant to FPPS inhibition and γδ T cell activation by Zol, we next determined whether direct killing of certain tumor cell lines by Zol was inhibiting their ability to stimulate γδ T cell secretion of TNF-α. As shown in Fig. 4A for a representative sample of tumor cell lines, tumor cell growth inhibition curves were similar. The Zol concentrations required for half maximal tumor cell line growth inhibition (IC50) were similar between the different types of tumors without high variability (Fig. 4B). These findings clearly demonstrate that the differences in Zol concentrations required for FPPS inhibition and γδ T cell activation were not due to the direct effects of Zol on tumor cell growth. In fact, much higher concentrations of Zol were required to inhibit tumor cell growth than those required to stimulate γδ T cells (Fig. S3). In addition, specific lysis of tumor cells by γδ T cells in the absence of Zol at an effector to target ratio of 1:1 was less than 6%, confirming further that tumor cell viability was not a critical factor determining the difference in IC50 and EC50 values between different tumor cell types.

γδ TCR-mediated recognition of Zol-treated tumor cells
We next examined the correlation between \(\gamma \delta \) TCR-mediated signaling and TNF-\(\alpha \) production. Tumor cell lines were cultured with serial dilutions of Zol and used to stimulate IL-2 production by \(\gamma \delta \) TCR-expressing Jurkat cells. Because the production of IL-2 requires signaling through the \(\gamma \delta \) TCR, Zol concentrations required for \(\gamma \delta \) TCR-mediated signaling can be determined. The Zol concentrations that stimulated half maximal IL-2 production by the transfectants were well correlated with those stimulating half maximal TNF-\(\alpha \) secretion by \(\gamma \delta \) T cells (Fig. 4C). These results demonstrate that \(\gamma \delta \) TCR-mediated signaling is a key factor determining cytokine production by \(\gamma \delta \) T cells in response to Zol.

\(\gamma \delta \) T cell cytotoxicity against Zol-treated tumor cells

Because activated \(\gamma \delta \) T cells express NK receptors such as NKG2D, \(\gamma \delta \) T cells exhibit cytotoxic activity against tumor cells expressing NK ligands, especially at higher effector to target ratios. Thus, \(\gamma \delta \) T cells lysed THP-1 myeloid leukemia cells and VMRC-RCW renal carcinoma cells, even in the absence of Zol-treatment, at an effector to target ratio of 40:1 (Fig. 4D). This is in stark contrast to cytokine secretion where \(\gamma \delta \) T cells did not produce TNF-\(\alpha \) in the absence of Zol (Fig. 2). Treating tumor cells with Zol increased \(\gamma \delta \) T cell killing in a Zol concentration-dependent manner. For THP-1 and VMRC-RCW cell lines,
tumor cytotoxicity by γδ T cells was half maximally increased by Zol concentrations of 100-1000 µM and 5-20 µM, respectively. These values were similar to the Zol concentrations required to stimulate production of TNF-α by γδ T cells (100-1000 µM versus 440 µM for THP-1 and 5-20 µM versus 13 µM for VMRC-RCW). Thus, γδ TCR-mediated recognition of Zol-treated tumor cells is critical not only for cytokine production but also for maximal cytotoxicity.
Discussion

Recent clinical trials have provided evidence that the addition of Zol to the treatment of patients with multiple myeloma and breast cancer provides benefits,\(^{(13, 14, 16, 17)}\) although the mechanisms underlying this antitumor activity of Zol have not been determined.\(^{(32)}\) One potential mechanism for Zol antitumor activity is the activation of $\gamma\delta$ T cells expressing $V\gamma2V\delta2$ TCRs. Zol inhibits the FPPS enzyme in isoprenoid synthesis. This results in the accumulation of the upstream metabolite, IPP, that stimulates $\gamma\delta$ T cells.\(^{(18-20)}\) To date, however, no comprehensive study has been reported comparing the Zol concentrations required for $\gamma\delta$ T cell activation to those required for FPPS inhibition in different types of tumors. In this study, we have examined 73 human tumor cell lines originating from a variety of tissues to determine the Zol concentrations required for $\gamma\delta$ T cell activation and FPPS inhibition. We find that the Zol concentrations required for $\gamma\delta$ T cell activation strongly correlated with those for FPPS inhibition. Our findings clearly show that the accumulation of IPP by FPPS inhibition is closely related to the activation of $\gamma\delta$ T cells in a variety of different types of tumor cell lines and is consistent with a study restricted to eight breast cancer cell lines.\(^{(33)}\) Moreover, signaling through the $\gamma\delta$ TCR was required for Zol to stimulate cytokine secretion and maximal cytotoxicity.
Why do different types of tumor cell lines vary in the Zol concentration required for FPPS inhibition and γδ T cell activation? In most tumor cell lines, Zol elicited half maximal γδ T cell responses at 10-100 µM. However, some but not all lymphoma, myeloid leukemia, and mammary carcinoma cell lines required much higher Zol concentrations of 100 µM or more. One possibility is that somatic mutation of FPPS in the cell lines alters their response to inhibition by Zol. There have been 14 mutations in FPPS reported out of 106 cancer samples analyzed (summarized on the Catalogue Of Somatic Mutations In Cancer website). However, none of the mutations were found in lymphomas, leukemias, or breast cancers making this explanation unlikely. As an alternative explanation, we speculate that certain types of tumors require higher concentrations of Zol for FPPS inhibition because Zol is not efficiently taken up through fluid-phase endocytosis\(^{(34)}\) due to differences in their metabolism or rate of nutrient uptake. Supporting this hypothesis, the opposite is clearly the case. Lipophilic pyridiium aminobisphosphonates (e.g. BPH-716), that are likely to enter cells more efficiently due to their much higher hydrophobicity, are up to ~12.5-fold more potent activators of γδ T cells than non-lipophilic aminobisphosphonates, such as Zol\(^{(35)}\), despite being 631-fold less potent inhibitor of FPPS\(^{(36)}\).
The addition of Zol to standard treatments for breast cancer patients improved
disease-free survival in the subset of patients that have estrogen receptor-positive cancers in
a low estrogen environment (either through anti-estrogen treatment or menopause)\(^{(13-16)}\).
Similarly, improved overall survival was noted with patients with newly diagnosed multiple
myeloma\(^{(17)}\). Surprisingly, these improvements were independent of the prevention of
skeletal-related events in myeloma\(^{(17)}\) and, in the case of breast cancer in postmenopausal
women, were related to a decrease in both skeletal and non-skeletal metastases\(^{(15, 16)}\). We
have shown that the majority of patients with early-stage breast cancer will respond to Zol
and many have elevated V\(\delta 2^+\) T cell frequencies\(^{(37)}\). However, we find in this study that
there is heterogeneity in the ability of mammary carcinoma cell lines to stimulate \(\gamma\delta\) T cell
responses with 42.9% requiring half maximal Zol concentration of >100 \(\mu\)M. If some of the
survival benefits of Zol are due to \(\gamma\delta\) T cells as has been proposed\(^{(21)}\), heterogeneity in the
tumor response to Zol may explain some of the variability of the patient response to Zol
treatment. Moreover, in vitro examination of the ability of a patient's breast cancer cells to
stimulate \(\gamma\delta\) T cell cultured with Zol or the cancer cell's sensitivity to FPPS inhibition by
Zol might be useful for selecting patients that would be the most likely to benefit from Zol-
based therapy.
As demonstrated in this study, renal cell carcinoma cell lines required relatively low concentrations of Zol to inhibit FPPS and to stimulate $\gamma\delta$ T cell responses in vitro.

Recent clinical trials have shown that $\gamma\delta$ T cell/Zol-based therapies provide clinical benefits for patients with lung metastasis of renal cell carcinoma.$^{(38-40)}$ Like the breast cancer and myeloma studies, these observations suggest that the effect of Zol is not solely limited to preventing skeletal metastasis. Instead, Zol may serve to potentiate the effector functions of $\gamma\delta$ T cells in patients with a variety of tumor types including those not metastatic to bone.

Clinical studies assessing $\gamma\delta$ T cell therapy have been performed in patients with lymphoma,$^{(41)}$ mammary carcinoma,$^{(27, 40)}$ myeloma,$^{(42)}$ renal cell carcinoma,$^{(24, 38, 43-45)}$ melanoma,$^{(45)}$ prostate cancer,$^{(26)}$ acute myeloid leukemia,$^{(45)}$ non-small cell lung cancer,$^{(46)}$ and assorted solid tumors$^{(40)}$ through either direct in vivo immunization with IL-2 or by adoptive immunotherapy after ex vivo expansion of $\gamma\delta$ T cells. However, the correlation between Zol sensitivity of a tumor and the clinical outcome remains unclear. Assessing the in vitro sensitivity of tumor cells to Zol may help to predict which tumor types are most likely to respond to therapy and, if cancer cells from individual patients can be tested for Zol sensitivity, aid in deciding which patients to recruit for Zol-based clinical trials.

Currently, many laboratories are attempting to develop N-BPs that have affinity for the
tumors themselves or that can be targeted to tumors. This medicinal chemistry approach may be help optimize N-BPs for \(\gamma \delta \) T cell-based cancer immunotherapy.
Acknowledgments

We are grateful to Shionogi Pharmaceutical Co., Ltd. (Chuo-ku, Osaka, Japan) for providing the recombinant human IL-2. This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Culture, Sports, and Technology of Japan (MEXT) (to Y. T.), by the “Coordination, Support, and Training Program for Translational Research” from MEXT (to Y. T., N. M., T. S., and M. T.), by the “Special Coordination Funds for Promoting Science and Technology” from MEXT and Astellas Pharma Inc. through the “Formation of Center for Innovation by Fusion of Advanced Technologies” program (to Y. T.), by the “Platform for Drug Discovery, Informatics, and Structural Life Science” from MEXT (to Y. T.), and by grants from the National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (AR045504) (to C. T. M.), National Cancer Institute, National Institutes of Health (CA113874 and CA097274-11) (to C. T. M.), and the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research and Development (1BX000972) (to C. T. M.). The content of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the granting agencies.
Disclosure Statement

C. T. M. is a co-inventor of US Patent 8,012,466 on the development of live bacterial vaccines for activating $\gamma\delta$ T cells. The other authors have no financial or commercial conflict of interest.
References

7 Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H. Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by

20 Thompson K, Rogers MJ. Statins prevent bisphosphonate-induced γ,δ-T-cell

32 Riganti C, Massaia M, Davey MS, Eberl M. Human γδ T-cell responses in infection and immunotherapy: common mechanisms, common mediators? *Eur J Immunol*
2012; 42: 1668-76.

38 Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K. Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with

(BrHPP, IPH 1101), a Vγ9Vδ2 T lymphocyte agonist in patients with solid tumors.

Figure Legends

Fig. 1. Differential effects of Zol on FPPS inhibition in tumor cell lines. (A) Dose-dependent Zol inhibition of geranylgeranylation of Rap 1A for various types of tumor cell lines including (a) lymphomas, □ MOLT-3, Δ PEER, ○ C1R, ♦ J.RT3-T3.5, ■ Raji, ▲ RAMOS-RA1, ● MOLT-4; (b) myeloid leukemias, □ HL60, Δ U937, ○ THP-1, ♦ SCC-3, ■ P31/FUJ, ▲ K562, ● NOMO-1; (c) mammary carcinomas, □ YMB-1-E, Δ MRK-nu-1, ○ HMC-1-8, ● MCF-7, ■ MDA-MB-231, ▲ T-47D, ● SK-BR-3; (d) renal cell carcinomas, ▲ 786-0, Δ VMRC-RCZ, ● UOK121, ○ Caki-1, ■ A-704; (e) pancreatic carcinomas, ● BxPC-3, ▲ KP4-1, ○ KP4-2, □ KP4-3, Δ MIAPaCa-2; and (f) other tumor cells, ● TGB24TKB, ▲ ACS, ○ MG-63, □ LK-2, Δ EJ-1. (B) Comparison of Zol concentrations (IC_{50}) required for half maximal inhibition of prenylation of Rap 1A in various types of tumor cells. Ly, lymphoma; My, myeloid leukemia; Ma, mammary carcinoma; Others, other tumor cell lines.

Fig. 2. Comparison of TNF-α secretion by γδ T cells stimulated with Zol-treated tumor cells. (A) TNF-α production by γδ T cells in response to tumor cells pretreated with various Zol concentrations: (a) lymphomas, □ MOLT-3, Δ PEER, ○ C1R, ♦ J.RT3-T3.5, ■ Raji, ▲
RAMOS-RA1, ● MOLT-4; (b) myeloid leukemias, □ HL60, Δ U937, ○ THP-1, ♦ SCC-3, ■ P31/FUJ, ▲ K562, ● NOMO-1; (c) mammary carcinomas, □ YMB-1-E, Δ MRK-nu-1, ○ HMC-1-8, ♦ MCF-7, ■ MDA-MB-231, ▲ T-47D, ● SK-BR-3; (d) renal cell carcinomas, ▲ 786-0, Δ VMRC-RCZ, ● UOK121, ○ Caki-1, ■ A-704; (e) pancreatic carcinomas, ● BxPC-3, ▲ KP4-1, ○ KP4-2, □ KP4-3, Δ MIAPaCa-2; (f) other tumor cells, ● TGBC24TKB, ▲ ACS, ○ MG-63, □ LK-2, Δ EJ-1. (B) Comparison of Zol concentrations (EC_{50}) required for half maximal TNF-α secretion by γδ T cells in response to stimulation with different tumor cell lines. Ly, lymphoma; My, myeloid leukemia; Ma, mammary carcinoma; Others, other tumor cell lines.

Fig. 3. Correlation between Zol concentrations required for FPPS inhibition and γδ T cell activation. Zol concentrations required for half maximal inhibition of prenylation of Rap 1A and half maximal stimulation of TNF-α secretion by γδ T cells. Each line connects IC_{50} (prenylation inhibition) and EC_{50} (TNF-α production) for the same tumor cell line: (a) lymphomas, ● C1R, ▲ Raji, ■ MOLT-3, ♦ PEER; (b) myeloid leukemias, ● THP-1, ▲ SCC-3; (c) mammary carcinomas, ● YMB-1-E, ▲ MCF-7, ■ MDA-MB-231; (d) renal cell carcinomas, ● 786-0, ▲ VMRC-RCZ, ■ A-704, ○ UOK121, ▼ Caki-1; (e) cholangiocell
carcinoma, ● TGB24TKB, ▲ TFK-1; (f) gastric carcinomas, ● ACS, ▲ AGS, ■ MKN1; (g) pancreatic carcinomas, ● BxPC-3, ▲ KP4-1, ■ KP4-2, ● KP4-3, ▼ MIAPaCa-2; (h) osteosarcomas, ● HOS, ▲ MG-63; (i) other tumors, ● LK-2, ▲ GCT-IZ, ■ CW-2, ♦ hu2, ▼ EJ-1.

Fig. 4. Correlation between TCR-mediated signaling and cytokine secretion and cytotoxicity by γδ T cells. (A) Dose-dependent inhibition of tumor cell growth by Zol. Tumor cell lines were treated with serial dilutions of Zol and cell growth inhibition examined for: ● J.RT3.T3.5, ▲ RAMOS-RAI, ■ Colo320, ♦ MG63. (B) Comparison of Zol concentrations required for half maximal growth inhibition of various tumor cell lines. Direct inhibition of tumor cell growth by Zol was determined for: Ly, lymphoma; My, myeloid leukemias; Ma, mammary carcinoma; Others, other tumor cell lines. (C) Correlation between TNF-α production by γδ T cells and γδ TCR-mediated signaling. Zol concentrations required for half maximal production of TNF-α by γδ T cells stimulated with Zol-treated tumor cells were compared with those required for half maximal production of IL-2 by γδ TCR-expressing J.RT3-T3.5 cells stimulated with Zol-treated tumor cell lines including: ● PK-9, ▲ KP4-3, ■ BxPC3, ○ MKN28, △ AGS, □ G361. (D)
Cytotoxic activity of \(\gamma\delta \) T cells against tumor cells. THP-1 myeloid leukemia and VMRC-RCW renal carcinoma cells were treated with serial dilutions of Zol and used as target for cytotoxicity by \(\gamma\delta \) T cells.
Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. List of tumor cell lines used in this study.

Fig. S1. Zol inhibition of geranylgeranylation of Rap 1A.

Fig. S2. Flow cytometric analysis of Vδ2⁺ γδ T cells before and after expansion from PBMC by Zol/IL-2 and the gating strategy.

Fig. S3. Comparison between Zol concentrations required for γδ T cell responses and tumor cell growth inhibition.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

(a) Luminescence (%) vs. Zol (μM)

(b) Growth inhibition (IC_{50}; nm)

(c) Zol concentration (μM) vs. TNF-α, IL-2

(d) Specific lysis (%) vs. Zol (μM) for THP-1, VMRC-RCW
<table>
<thead>
<tr>
<th>Tumor</th>
<th>Description</th>
<th>Source</th>
<th>Tumor</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1R</td>
<td>B lymphoblast</td>
<td>1</td>
<td>TFK-1</td>
<td>Bile duct carcinoma</td>
<td>6</td>
</tr>
<tr>
<td>RAMOS-RA1</td>
<td>Burkitt’s lymphoma</td>
<td>2</td>
<td>ACS</td>
<td>Gastric carcinoma</td>
<td>6</td>
</tr>
<tr>
<td>Raji</td>
<td>Burkitt’s lymphoma</td>
<td>2</td>
<td>AGS</td>
<td>Gastric carcinoma</td>
<td>6</td>
</tr>
<tr>
<td>J.RT3-T3.5</td>
<td>T cell lymphoma</td>
<td>1</td>
<td>GCIY</td>
<td>Gastric carcinoma</td>
<td>3</td>
</tr>
<tr>
<td>MOLT-3</td>
<td>T cell lymphoma</td>
<td>2</td>
<td>KATOIII</td>
<td>Gastric carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>MOLT-4</td>
<td>T cell lymphoma</td>
<td>2</td>
<td>MKN1</td>
<td>Gastric carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>PEER</td>
<td>T cell lymphoma</td>
<td>2</td>
<td>MKN28</td>
<td>Gastric carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>HL60</td>
<td>Monocyte-like cell line</td>
<td>2</td>
<td>MKN74</td>
<td>Gastric carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>NOMO-1</td>
<td>Monocyte-like cell line</td>
<td>2</td>
<td>AsPC-1</td>
<td>Pancreatic carcinoma</td>
<td>1</td>
</tr>
<tr>
<td>SCC-3</td>
<td>Monocyte-like cell line</td>
<td>2</td>
<td>BxPC-3</td>
<td>Pancreatic carcinoma</td>
<td>1</td>
</tr>
<tr>
<td>THP-1</td>
<td>Monocyte-like cell line</td>
<td>2</td>
<td>KP4-1</td>
<td>Pancreatic carcinoma</td>
<td>3</td>
</tr>
<tr>
<td>U937</td>
<td>Monocyte-like cell line</td>
<td>2</td>
<td>KP4-2</td>
<td>Pancreatic carcinoma</td>
<td>3</td>
</tr>
<tr>
<td>P31/FUJ</td>
<td>Monocyte-like cell line</td>
<td>2</td>
<td>KP4-3</td>
<td>Pancreatic carcinoma</td>
<td>3</td>
</tr>
<tr>
<td>K562</td>
<td>Erythrocytoma</td>
<td>2</td>
<td>MIA PaCa-2</td>
<td>Pancreatic carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>HMC-1-8</td>
<td>Mammary carcinoma</td>
<td>2</td>
<td>PANC-1</td>
<td>Pancreatic carcinoma</td>
<td>3</td>
</tr>
<tr>
<td>MCF-7</td>
<td>Mammary carcinoma</td>
<td>2</td>
<td>PK-1</td>
<td>Pancreatic carcinoma</td>
<td>3</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>Mammary carcinoma</td>
<td>1</td>
<td>PK-8</td>
<td>Pancreatic carcinoma</td>
<td>3</td>
</tr>
<tr>
<td>MRK-nu-1</td>
<td>Mammary carcinoma</td>
<td>2</td>
<td>PK-9</td>
<td>Pancreatic carcinoma</td>
<td>6</td>
</tr>
<tr>
<td>SK-BR-3</td>
<td>Mammary carcinoma</td>
<td>1</td>
<td>T3M4</td>
<td>Pancreatic carcinoma</td>
<td>6</td>
</tr>
<tr>
<td>T-47-D</td>
<td>Mammary carcinoma</td>
<td>1</td>
<td>HOS</td>
<td>Osteosarcoma</td>
<td>2</td>
</tr>
<tr>
<td>YMB-1-E</td>
<td>Mammary carcinoma</td>
<td>2</td>
<td>HuO</td>
<td>Osteosarcoma</td>
<td>7</td>
</tr>
<tr>
<td>786-0</td>
<td>Renal cell carcinoma</td>
<td>1</td>
<td>MG-63</td>
<td>Osteosarcoma</td>
<td>2</td>
</tr>
<tr>
<td>786-0W</td>
<td>Renal cell carcinoma</td>
<td>4</td>
<td>OST</td>
<td>Osteosarcoma</td>
<td>7</td>
</tr>
<tr>
<td>A-704</td>
<td>Renal cell carcinoma</td>
<td>1</td>
<td>Saos-2</td>
<td>Osteosarcoma</td>
<td>3</td>
</tr>
<tr>
<td>ACHN</td>
<td>Renal cell carcinoma</td>
<td>1</td>
<td>TAKAO</td>
<td>Osteosarcoma</td>
<td>7</td>
</tr>
<tr>
<td>Caki-1</td>
<td>Renal cell carcinoma</td>
<td>2</td>
<td>Colo320</td>
<td>Colorectal carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>UOK111</td>
<td>Renal cell carcinoma</td>
<td>5</td>
<td>CW2</td>
<td>Colorectal carcinoma</td>
<td>3</td>
</tr>
<tr>
<td>UOK121</td>
<td>Renal cell carcinoma</td>
<td>5</td>
<td>DLD-1</td>
<td>Colorectal carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>VMRC-RCW</td>
<td>Renal cell carcinoma</td>
<td>2</td>
<td>C32TG</td>
<td>Melanoma</td>
<td>2</td>
</tr>
<tr>
<td>VMRC-RCZ</td>
<td>Renal cell carcinoma</td>
<td>2</td>
<td>G-361</td>
<td>Melanoma</td>
<td>2</td>
</tr>
<tr>
<td>EJ-1</td>
<td>Bladder carcinoma</td>
<td>2</td>
<td>LK-2</td>
<td>Lung carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>T24</td>
<td>Bladder carcinoma</td>
<td>2</td>
<td>SBC-2</td>
<td>Lung carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>TGBC1TKB</td>
<td>Gallbladder carcinoma</td>
<td>3</td>
<td>hu2</td>
<td>Hepatic carcinoma</td>
<td>8</td>
</tr>
<tr>
<td>TGBC2TKB</td>
<td>Gallbladder carcinoma</td>
<td>3</td>
<td>GCT-IZ</td>
<td>Osteoclast-like cell line</td>
<td>7</td>
</tr>
<tr>
<td>TGBC24TKB</td>
<td>Gallbladder carcinoma</td>
<td>3</td>
<td>PC-3</td>
<td>Prostatic carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>HuCCT1</td>
<td>Bile duct carcinoma</td>
<td>2</td>
<td>HT-1080</td>
<td>Fibrosarcoma</td>
<td>2</td>
</tr>
<tr>
<td>MZChA2</td>
<td>Bile duct carcinoma</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tumor cell lines indicated as 1 were purchased from American Type Culture Collection, Manassas, VA, U.S.A., 2 from Health Science Research Resources Bank, Sennan, Osaka, Japan, 3 from RIKEN BioResource Center, Tsukuba, Ibaraki, Japan, 4 kindly provided by Dr. Kazuhiro Iwai, Kyoto University, Sakyo, Kyoto, Japan, 5 by Dr. Hirohito Kobayashi, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan, 6 by Dr. Hidenori Tanaka, Kyoto University, Sakyo, Kyoto, Japan, 7 by Dr. Junya Toguchida, Kyoto University, Sakyo, Kyoto, Japan, and 8 by Dr. Atsushi Aruga, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan.
Fig. S1. Zol inhibition of geranylgeranylation of Rap 1A. Tumor cells were resuspended in 90 ml of complete RPMI1640 medium supplemented with 10% fetal bovine serum (FBS, Sigma, St. Louis, MO), 10^{-5} M 2-mercaptoethanol (Invitrogen corp., Carlsbad, CA), 100 IU/ml of penicillin (Meiji Seika Kaisha, Ltd., Chuo-Ku, Tokyo, Japan), and 100 µg/ml of streptomycin (Meiji Seika Kaisha, Ltd., Chuo-Ku, Tokyo, Japan) and grown overnight at 37°C with 5% CO_2 in 225 cm^2 flasks. Zol was then added to the flasks to the concentrations indicated above. After incubation for 16 h, the cells were harvested and resuspended in 100 µl of lysis solution containing 1% NP-40 (Wako Pure Chemical Industries Ltd., Chuo-ku, Osaka, Japan), 0.1% sodium dodecyl sulfate (Tokyo Chemistry Industry Co., Ltd., Chuo-Ku, Tokyo, Japan), and 0.5% sodium deoxycholate (Wako) in microcentrifuge tubes. After centrifugation at 15,000 rpm for 10 min, the supernatants were transferred to new tubes and SDS-urea buffer containing 6.7 M urea (Wako), 5% sodium dodecylsulfate (Tokyo Chemistry Industry), 100 mM Tris–HCl buffer, pH 7.4 (Wako), 0.25% bromophenol blue (Wako), and 50 mM dithiothreitol (Wako) were added to give a protein concentration of 5 mg/ml. The samples were loaded on 15% polyacrylamide slab gels (Daiichi Pure Chemicals Co., Ltd., Chuo-ku, Tokyo, Japan) at 50 µg/lane, and electrophoresed at 120 mA/h. Then, the proteins were transferred onto Polyscreen (R) PVDF Transfer Membranes (PerkinElmer Inc., Waltham, MA) treated with goat anti-unprenylated Rap 1A mAb (×500, Santa Cruz Biotechnology Inc., Santa Cruz, CA), and horse radish peroxidase-conjugated anti-goat IgG mAb (×5,000, KPL Inc., Gaithersburg, MD), followed by SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, Rockford, IL). Although not shown, controls using goat anti-Rap1A and anti-GAPDH mAbs (Santa Cruz Biotechnology) were included in this study. Chemiluminescence was detected on Amersham Hyperfilm™ MP (GE Healthcare Ltd., Little Chalfont, Buckinghamshire, UK) using a Fuji Medical Film Processor FPM100 (Fuji Film Co., Ltd., Ashigara, Kanagawa, Japan). Of the 73 tumor cell lines tested, images from six representative cells are shown above. The strength of signal for each protein band was determined by the brightness of the corresponding part of the image scanned using a LAS-4000 mini Luminescent Image Analyzer (Fuji Film Co., Ltd.). The dose-dependency curves in Figure 2 are based on digitalized data.
Fig. S2. Flow cytometric analysis of Vδ2⁺ γδ T cells before and after expansion of PBMC by Zol/IL-2 and the gating strategy. PBMCs before and after stimulation with Zol/IL-2 were stained as described below and analyzed using a FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ); Gating strategy (A) and two-color flow cytometric analysis (B) of PBMCs before stimulation with Zol and (C and D) after expansion over 10 days. The proportion of Vδ2⁺ T cells relative to CD3⁺ cells was 2.7% and 97.3% before and after expansion. γδ T cells on day 10 were harvested and used for the TNF-α production assay.

Preparation of PBMCs and cell culture. Peripheral blood samples were obtained from a patient with mammary carcinoma after institutional review board approval and with written informed consent. PBMCs were purified by Ficoll-Paque™ PLUS (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) gradient centrifugation. The cells were washed two times with PBS, then resuspended in modified Yssel’s medium [1] supplemented with 10% human AB serum (Cosmobio., Co., Ltd., Koto-ku, Tokyo, Japan). They were cultured for 10 days at 2.5×10⁶/1.5 ml in modified Yssel’s medium with 5 μM Zol and 100 U/ml IL-2 (Shionogi Pharmaceutical Co., Ltd., Chuo-ku, Osaka, Japan) in a 24-well plate (Corning Incorp., Corning, NY). The culture medium was replaced everyday from day 2 with fresh medium containing IL-2.

Cell staining. PBMCs before and after expansion were plated out at 2×10⁵ cells/50 μl in a 96-well plate (Corning Incorporated, Corning, NY). The cells were then treated with 3 μl of fluorescein isothiocyanate (FITC)-conjugated anti-TCR Vδ2 mAb (Beckman Coulter Inc., Flullerton, CA), and phycoerythrin (PE)-conjugated anti-CD3 mAb (BD Biosciences, San Diego, CA) on ice for 30 min. After being washed three times with PBS, the cells were resuspended in 200 μl of 1% paraformaldehyde in PBS and subjected to flow cytometry.

Fig. S3. Comparison between Zol concentrations required for γδ T cell responses and tumor cell growth inhibition. Zol concentrations required for half-maximal inhibition (IC$_{50}$) of tumor cell growth (Growth Inhibition) were examined as described in Material and Methods and compared with those required for half maximal production (EC$_{50}$) of TNF-α by γδ T cells stimulated with Zol-pretreated tumor cells (TNF-α Production). Each line connects EC$_{50}$ (TNF-α production) and IC$_{50}$ (Growth inhibition) for the same tumor cell line: lymphomas (a), ● RAMOS-RAI, ▲ Raji, ■ J.RT3-T3.5, ◆ MOLT-4; myeloid cells (b), ● HL60, ▲ NOMO-1, ■ SCC-3, ◆ THP-1, ▼ P31/FUJ; mammary carcinomas (c), ● HMC-1-8, ▲ MDA-MB-231; renal cell carcinoma (d), ● 786-0, ▲ A-704, ■ Caki-1, ◆ UOK121, ▼ VMRC-RCW; melanoma (e), ● C32TG, ▲ G361; gastric carcinoma (f), ● AGS, ▲ MKN1; colorectal carcinoma (g), ● Colo320, ▲ DLD-1; osteosarcoma (h), ● MG63, ▲ OST, ■ SAOS2; lung carcinoma (i), ● LK-2, ▲ SBC-2.