On Class Numbers of Hyperelliptic Function Fields, II

Tadashi WASHIO

Department of Mathematics, Faculty of Education,
Nagasaki University, Nagasaki

(Received Oct. 31, 1979)

Abstract

Let $F = GF(p)$ be a finite prime field of characteristic $p \neq 2$. Let $K = F(x, y)$ be an algebraic function field over F defined by an equation $y^2 = x^n - a$ ($a \neq 0, a \in F$), where n means an odd number so that $n > 1$ and $p \nmid n$. Let h be the class number of K and g the genus of K. Then, it is obvious that $h = p + 1$ if $n = 3$ and $p \equiv 2 \mod 3$. This particular fact can be generally expressed as follows:

Given n, there exists an integer c such that $h = (p + 1)g$ whenever $p \equiv c \mod n$.

In this note, it is shown that this generalization is true in the particular case of $n = 5$ and of $n = 7$.

1. Introduction. Let $F = GF(p)$ be a finite prime field of characteristic $p \neq 2$. Let n be an odd number satisfying $n > 1$ and $p \nmid n$. Throughout this note, $K = F(x, y)$ means an algebraic function field over F defined by an equation $y^2 = x^n - a$ ($a \neq 0, a \in F$). If we denote by g the genus of K, it is obvious that $g = (n-1)/2$.

Let h be the class number of K, i.e., the order of the finite group of divisor classes of degree zero. We will then discuss the following question:

Does there exist an integer c which depends only on n such that $h = (p + 1)g$ whenever $p \equiv c \mod n$?

In the case of $n = 3$, we had an answer in the affirmative. ([5], Theorem 1 (i)). When $h = p^e + 1$ then the similar question was discussed. ([6]). In this note, we wish to give an answer only in the case of $n = 5$ and of $n = 7$. In doing so, we will recall a method of estimating class numbers of algebraic function fields without proofs but with references.

Let $L(u) = 1 + a_1 u + a_2 u^2 + \cdots + p^{e-1} a_{e-1} u^{e-1} + p^e a_0 u^e$ be the L-function of K. Then it is obvious that $h = L(1)$. As is well known, the explicit expression for coefficients a_i, a_2 and a_3 can be put in the form
\[\begin{align*}
2a_t &= N_t - (2p+1)N_t + 2N_t + 2p \\
6a_t &= N_t - 3(p+1)N_t + (3p-1)N_t - 6(p+1)N_t + 6N_t + 6N_t
\end{align*} \]

where \(N_d \) means the number of prime divisors of degree \(d \) of \(K \). (M.L.Madan and C.S.Queen [2], p. 427).

Thus, for our present purpose, it is enough to compute \(N_d \). Since \(N_d \) depends on the number of prime divisors of degree one in some constant field extensions of \(K \), in § 2 we will investigate the number \(N(K_d) \) of prime divisors of degree one of an algebraic function field \(K_d \) over a finite field \(F_d \). In § 3, we will compute \(h \) in the case of \(n=5 \) and of \(n=7 \).

2. The number of prime divisors of degree one.

Let \(K_d \) be the constant field extension of \(K \) of degree \(d \) and let \(F_d \) be the finite field \(GF(p^d) \) with \(p^d \) elements. Let us denote by \(N(K_d) \) the number of prime divisors of degree one of \(K_d \). We will then consider \(N(K_d) \) under the assumption \(p \equiv -1 \mod n \).

THEOREM 1. If \(d \equiv 1 \mod 2 \) and \(p \equiv -1 \mod n \), then the equality \(N(K_d) = p^d + 1 \) holds.

PROOF. By the definition of \(N(K_d) \), we have

\[N(K_d) = 1 + \# \{(a, \beta) \in F_d \times F_d ; \beta^3 = a^a - a \} \]

So we need to estimate the last term in this formula. Since our assumptions \(d \equiv 1 \mod 2 \) and \(p \equiv -1 \mod n \) lead to \((p^d - 1, n) = 1 \), we can get \(F_d^* = F_d \) in view of the fact that \(F^* = F_d - \{0\} \) is a cyclic group of order \(p^d - 1 \). This implies that

\[\# \{(a, 0) \in F_d \times F_d ; a^a = a \} = 1 \]

and

\[\# \{(a, \beta) \in F_d \times F_d ; \beta \neq 0, \beta^3 = a^a - a \} = p^d - 1. \]

Therefore we have \(N(K_d) = 1 + 1 + p^d - 1 = p^d + 1 \).

We will now consider \(N(K_d) \) in the case of \(d = 2 \).

THEOREM 2. If \(p \equiv -1 \mod n \) and \(n = 2g + 1 \), then \(N(K_2) = p^2 + 2gp + 1 \) holds.

We will prepare some lemmas for the proof of this theorem. The following lemma will be proved on the basis of the properties of Hasse-Witt matrices of the algebraic function field \(K_d \) over \(F_d \).

LEMMA 1. If \(p \equiv -1 \mod n \), then \(N(K_d) \equiv 1 \mod p \) for an arbitrary positive integer \(d \).

PROOF. For \(0 \leq u, v \leq g - 1 \), let \(A_{u,v} \) be the coefficient of \(x^{v+1} \) in the following polynomial

\[\psi((x-a)(x+1)^r x^{u+1}) = \psi(\sum \binom{(p-1)}{r} \binom{(p-1)}{r} \binom{(p-1)}{r} (-a)^{(p-1)/2} x^{nr+u+1}) \]

where \(\psi \) means the \(p^{-1} \)-linear operator satisfying

\[\psi(x^w) = \begin{cases}
\frac{x^w}{p} & \text{if } p \mid w \\
0 & \text{otherwise.}
\end{cases} \]

The matrix \(A = (A_{u,v}) \) is called the Hasse-Witt matrix. (L.Miller [3]). Since it is easy in our case to show that \(nr + u + 1 \neq p(v+1) \) for every \(0 \leq u, v \leq g - 1 \), we
have $A_n=0$ i.e., $A=0$. Therefore the desired assertion $N(K_2)\equiv 1 \mod p$ follows at once from $A=0$.([4], Theorem).

LEMMA 2. If $p\equiv -1 \mod n$, then $N(K_2)\equiv 0 \mod 2$ and $N(K_2)\equiv 3 \mod n$ hold.

PROOF. Since $(p-1,n)=1$, we get $\#\{\alpha \in F_1=GF(p) : \alpha^n=a\} = 1$. This lead to $\#\{\alpha \in F_1 : \alpha^n=a\} = n$, because F_1 contains, in our case, an nth primitive root of unity.

Moreover, it is clear that $\#\{\alpha, \beta \in F_1 \times F_1 : \beta^2=\alpha^n-a, \beta \neq 0\} \equiv 0 \mod 2$. Hence we get the first part of the lemma as follows.

$$N(K_2) = 1 + \#\{(\alpha, \beta) \in F_1 \times F_1 : \beta^2=\alpha^n-a\} \equiv 1 + n \equiv 0 \mod 2.$$

We will now prove the second assertion. Since F_1 contains an nth primitive root of unity, we have

$$\#\{\alpha, \beta \in F_1 \times F_1 : \alpha^n=\beta^2+a, \alpha \neq 0\} \equiv 0 \mod n.$$

Therefore, because of $\#\{\beta \in F_1 : \beta^2=-a\} = 2$, we get

$$N(K_2) = 1 + \#\{(0, \beta) \in F_1 \times F_1 : \beta^2=-a\} + \#\{(\alpha, \beta) \in F_1 \times F_1 : \alpha \neq 0, \beta^2=\alpha^n-a\} \equiv 1 + 2 = 3 \mod n.$$

This completes the proof of the lemma.

Now let us turn to the proof of Theorem 2.

PROOF of Theorem 2. As is well known, the inequalities $p^2+1-2gp \leq N(K_2) \leq p^2+1+2gp$ hold. ([M. Eichler[1], p. 306]. Therefore Lemma 1 and the first part of Lemma 2 lead to

$$N(K_2) = p^2 + 1 + mp \ (m=0, \pm 2, \pm 4, \ldots, \pm 2g).$$

Using the second part of Lemma 2, we have $p^2+1+mp \equiv 3 \mod n$. Therefore we can easily get $m=2g$ because of our assumptions $p \equiv -1 \mod n$ and $n=2g+1$. Hence we have our assertion $N(K_2) = p^2+1+2gp$.

3. Results. Let us now consider the question in §1 only in the case of $n=5$ and $n=7$. In fact, we can answer our question in the case of $n=5$ in the affirmative as follows.

THEOREM 3. Let $F=GF(p)$ be a finite prime field of characteristic $p \neq 2$. Let $K=F(x,y)$ be a hyperelliptic function field over F defined by an equation $y^2=x^3-a \ (a \neq 0, a \in F)$. Denote by h the class number of K. If $p \equiv 4 \mod 5$, then $h=(p+1)^3$ and $L(u)=1+2pu^2+p^2u^3$.

PROOF. Applying Theorem 1 to $d=1$ we have $N_i = N(K_i) = p+1$. Moreover, applying Theorem 2 to $g=2$, we have $N(K_i) = p^2+4p+1$. So we get $N_i = p(p+3)/2$ in view of the fact that the relation among N_i, N_2 and $N(K_2)$ is given by $N(K_2) = N_i+2N_2$. Therefore, by making use of the formula (1), we can easily obtain $a_i=0, a_2=2p, L(u)=1+2pu^2+p^2u^3$ and $h=L(1)=(p+1)^3$.

Finally we will give an affirmative answer to our question in the case of $n=7$.

THEOREM 4. Let $F=GF(p)$ be a finite prime field of characteristic $p \neq 2$. Let $K=F(x,y)$ be a hyperelliptic function field over F defined by an equation $y^2=x^3-a \ (a \neq 0, a \in F)$. Denote by h the class number of K. If $p \equiv 6 \mod 7$, then $h=(p+1)^3$.
and \(L(u) = 1 + 3pu^3 + 3p^2u^4 + p^3u^6 \).

Proof. As applications of Theorem 1 to \(d=1 \) and \(d=3 \), we have \(N_1 = N(K_1) = p+1 \) and \(N(K_3) = p^3+1 \). Consequently the formula \(N(K_2) = N_1 + 3N_2 \) leads to \(N_2 = (p^3-p)/3 \). Similarly, applying Theorem 2 to \(g = 3 \), we have \(N(K_3) = p^3 + 6p + 1 \). Therefore the formula \(N(K_2) = N_1 + 2N_2 \) also leads to \(N_2 = (p^3 + 5p)/2 \).

Hence, by means of the formula (1), it is easy to check on \(a_i = a_3 = 0, a_1 = 3p, L(u) = 1 + 3pu^3 + 3p^2u^4 + p^3u^6 \) and \(h = L(1) = (p+1)^3 \). This completes the proof of the theorem.

References