<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>On Class Numbers of Hyperelliptic Function Fields</td>
</tr>
<tr>
<td>著者</td>
<td>鷲尾 忠司</td>
</tr>
<tr>
<td>引用</td>
<td>長崎大学教育学部自然科学研究報告, vol.29, p.1-3; 1978</td>
</tr>
<tr>
<td>発行日</td>
<td>1978-02-28</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/32718</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE

http://naosite.lb.nagasaki-u.ac.jp
On Class Numbers of Hyperelliptic Function Fields

Tadashi WASHIO

Department of Mathematics, Faculty of Education,
Nagasaki University, Nagasaki

(Received Oct. 31, 1977)

Abstract. Let $F=GF(p)$ be a finite prime field of characteristic $p\neq 2$. Let $K=F(x,y)$ be a hyperelliptic function field over F defined by an equation $y^2=x^n+a$ ($a \neq 0, a \in F$), where n denotes an odd number such that $n>1$ and $p \mid n$. Let h be the class number of K and g the genus of K. Then, we have proved that $h=p+1$ if $n=3$ and $p \equiv 2 \mod 3$. ([4], Theorem 1 (i)). This particular fact can be generally expressed as follows:

Given n, there exists an integer c such that $h=p^g+1$ whenever $p \equiv c \mod n$. In this note, it is shown that this generalization is true in the particular case of $n=5$ and of $n=7$.

1. Introduction. Let $F=GF(p)$ be a finite prime field of characteristic $p\neq 2$. Let $K=F(x,y)$ be a hyperelliptic function field over F defined by an equation $y^2=x^n+a$ ($a \neq 0, a \in F$), where n denotes an odd number such that $n>1$ and $p \mid n$. Let h be the class number of K and g the genus of K. It is obvious that $g=(n-1)/2$. (M. Deuring[1], §17). We will then discuss the following question;

Does there exist an integer c which depends only on n such that $h=p^g+1$ whenever $p \equiv c \mod n$?

In the case where $n=3$, we had an answer in the affirmative. ([4], Theorem 1 (i)). In this note, we will give an affirmative answer only in the case of $n=5$ and of $n=7$.

2. Preliminary. In this section, we will state a method of estimating for class numbers of algebraic function fields without proof but with references. Let K be an algebraic function field of one variable having Galoisfield $GF(q)$ as its exact field of constants. The order of the finite group of divisor classes of degree zero is called the class number of K.

Then, with the L-function of K, it is well known that the class number h is given by

$$h=L(1) \quad (1)$$

where $L(u)=1+a_1u+a_2u^2+\cdots+a_{g+1}u^{g+1}+\cdots+q^{-1}a_1u^{g+1}+q^{g-2}a_2u^{g-2}+q^{g-1}a_3u^{g-1}+q^{g}u^{g} \in \mathbb{Z}[u]$ g being the genus of K. (M. Eichler [2], p. 305).
Moreover, the explicit expression for coefficients a_1, a_2, a_3 is given by

\begin{align}
2a_1 &= N_1 - (q+1) \\
2a_2 &= N_1^2 - (2q+1)N_1 + 2N_2 + 2q \\
6a_3 &= N_1^3 - 3qN_1^2 + (3q-1)N_1 - 6(q+1)N_2 + 6N_1N_2 + 6N_3
\end{align}

where N_i denotes the number of prime divisors of degree i of K. (M. L. Madan and C. S. Queen [3], p. 427). Thus, for our purpose, it is enough to compute the number of prime divisors of degree i.

3. Results. Let us now answer the question in Section 1 of this note only in the case of $n=5$ and of $n=7$. Since we need to estimate the number of prime divisors of degree one, we will start by proving the following theorem.

Theorem 1. Let F be a finite field $GF(q)$ of characteristic $\neq 2$. Given an odd number $n>1$, let K be a hyperelliptic function field over F defined by an equation $y^2 = x^n + a$ ($a \neq 0$, $a \in F$). Let N_1 denote the number of prime divisors of degree one. Then, we have $N_1 = q + 1$ if n and $q-1$ are coprime.

Proof. Since n is odd, there exists only one infinite prime divisor of K. So we get the formula as follows;

\begin{align}
N_1 &= 1 + |\{(\alpha, \beta) \in F \times F \mid \beta^2 = \alpha^n + a\}|
\end{align}

where $|S|$ means the number of elements in S.

Moreover, for the sake of convenience, we will denote by F^* the multiplicative group of non-zero elements of F. Then it is easy to verify that $\{\alpha^n \mid \alpha \in F^*\} = F^*$. This is due to the assumption $(q-1, n) = 1$ and to the fact that F^* is a cyclic group of order $q-1$. Therefore, we have $\{\alpha^n \mid \alpha \in F\} = F$, so we see $\{\alpha^n + a \mid \alpha \in F\} = F$.

This equality means that

\begin{align}
|\{(\alpha, 0) \in F \times F \mid \alpha^n + a = 0\}| &= 1 \\
|\{(\alpha, \beta) \in F \times F \mid \beta^2 = \alpha^n + a, \beta \neq 0\}| &= q - 1
\end{align}

because of the fact that the number of elements of the form β^2 ($\beta \in F^*$) equals to $(q-1)/2$ and that we can associate such a element β^2 with two prime divisors of degree one of K. Thus, by making use of the formula (3) above, we obtain $N_1 = 1 + 1 + (q-1) = q + 1$. Theorem 1 is thereby proved.

Now let us turn to our question in Section 1. As an application of Theorem 1, we can easily answer our question for $n = 5$ in the affirmative. In fact, we will prove the following theorem.

Theorem 2. Let $F = GF(p)$ be a finite prime field of characteristic $p \neq 2$. Let $K=F(x,y)$ be a hyperelliptic function field over F defined by an equation $y^2 = x^5 + a$ ($a \neq 0$, $a \in F$). Denote by h the class number of K. Then we have $h = p^2 + 1$ and $L(u) = 1 + p^2u^4$ if $p \equiv 2$ or $3 \mod 5$.
On Class Numbers of Hyperelliptic Function Fields

Proof. We will indicate by N_i ($i=1,2$) the number of prime divisors of degree i in K. Moreover we will denote a constant field extension of K of degree two by \overline{K} and also the number of prime divisors of degree one of \overline{K} by \overline{N}_1. By means of our assumption $p \equiv 2$ or $3 \mod 5$, it is obvious that $(p-1,5)=1$ and $(p^2-1,5)=1$.

Then, applying Theorem 1 to K and \overline{K}, we have $N_1=p+1$ and $\overline{N}_1=p^2+1$. Thus we see $N_2=p(p-1)/2$ in view of the fact that the relation among N_1, N_2, \overline{N}_1 is given by $\overline{N}_1=N_1+2N_2$. Hence we can easily obtain $a_1=a_2=0$ because of the formula (2). In particular $L(u)=1+p^2u^4$. Therefore the formula (1) leads to $h=p^2+1$. This completes the proof of Theorem 2.

Finally we will give an affirmative answer to our question in the case of $n=7$.

Theorem 3. Let $F=GF(p)$ be a finite prime field of characteristic $p \neq 2$. Let $K=F(x,y)$ be a hyperelliptic function field over F defined by an equation $y^2=x^7+a$ ($a \neq 0$, $a \in F$). Denote by h the class number of K. Then we have $h=p^3+1$ and $L(u)=1+p^3u^6$ if $p \equiv 3$ or $5 \mod 7$.

Proof. We will denote by N_i ($i=1,2,3$) the number of prime divisors of degree i of K. Let \overline{K} and $\overline{\overline{K}}$ be constant field extensions of K of degree two and of three respectively. Moreover, denote by \overline{N}_1 and \overline{N}_3 the numbers of prime divisors of \overline{K} and of $\overline{\overline{K}}$ respectively. Then N_2 and N_3 are explicitly given by

\begin{equation}
\overline{N}_1=N_1+2N_2 \quad \text{and} \quad \overline{N}_3=N_1+3N_3.
\end{equation}

By means of our assumption $p \equiv 3$ or $5 \mod 7$, we can obviously obtain $(p-1,7)=1$, $(p^2-1,7)=1$ and $(p^3-1,7)=1$. Therefore, as applications of Theorem 1 to K, \overline{K} and $\overline{\overline{K}}$, we have $N_1=p+1$, $\overline{N}_1=p^3+1$ and $\overline{N}_3=p^3+1$. It follows from the formula (4) above that $N_2=p(p-1)/2$ and $N_3=p(p^2-1)/3$. Thus, by making use of the formulas (2), it is easy to get that $a_1=a_2=a_3=0$. Hence we see $L(u)=1+p^3u^6$ and $h=p^3+1$ in view of the formula (1). Therefore Theorem 3 is completely proved.

References