On Class Numbers of Hyperelliptic Function Fields

Tadashi WASHIO

Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki

(Received Oct. 31, 1977)

Abstract. Let $F=GF(p)$ be a finite prime field of characteristic $p\neq 2$. Let $K=F(x,y)$ be a hyperelliptic function field over F defined by an equation $y^2=x^n+a$ $(a \neq 0, a \in F)$, where n denotes an odd number such that $n>1$ and $p \nmid n$. Let h be the class number of K and g the genus of K. Then, we have proved that $h=p+1$ if $n=3$ and $p \equiv 2 \mod 3$. ([4], Theorem 1 (i)). This particular fact can be generally expressed as follows;

Given n, there exists an integer c such that $h=p^g+1$ whenever $p \equiv c \mod n$. In this note, it is shown that this generalization is true in the particular case of $n=5$ and of $n=7$.

1. Introduction. Let $F=GF(p)$ be a finite prime field of characteristic $p \neq 2$. Let $K=F(x,y)$ be a hyperelliptic function field over F defined by an equation $y^2=x^n+a$ $(a \neq 0, a \in F)$, where n denotes an odd number such that $n>1$ and $p \nmid n$. Let h be the class number of K and g the genus of K. It is obvious that $g=(n-1)/2$. (M. Deuring [1], §17). We will then discuss the following question;

Does there exist an integer c which depends only on n such that $h=p^g+1$ whenever $p \equiv c \mod n$?

In the case where $n=3$, we had an answer in the affirmative. ([4], Theorem 1 (i)). In this note, we will give an affirmative answer only in the case of $n=5$ and of $n=7$.

2. Preliminary. In this section, we will state a method of estimating for class numbers of algebraic function fields without proof but with references. Let K be an algebraic function field of one variable having Galoisfield $GF(q)$ as its exact field of constants. The order of the finite group of divisor classes of degree zero is called the class number of K.

Then, with the L-function of K, it is well known that the class number h is given by

\[h = L(1) \]

where

\[
L(u) = 1 + a_1 u + a_2 u^2 + \cdots + a_g u^g + q a_{g+1} u^{g+1} + \cdots + q^{t-2} a_{2t-2} u^{2t-2} + q^{t-1} a_{2t-1} u^{2t-1} + q^{t} u^{2t} \in \mathbb{Z}(u)
\]

g being the genus of K. (M. Eichler [2], p. 305).
Moreover, the explicit expression for coefficients a_1, a_2, a_3 is given by

\[
\begin{align*}
2a_1 &= N_1 - (q+1) \\
2a_2 &= N_1^2 - (2q+1)N_1 + 2N_2 + 2q \\
6a_3 &= N_1^3 - 3qN_1^2 + (3q-1)N_1 - 6(q+1)N_2 + 6N_1N_2 + 6N_3
\end{align*}
\]

where N_i denotes the number of prime divisors of degree i of K. (M. L. Madan and C. S. Queen [3], p. 427). Thus, for our purpose, it is enough to compute the number of prime divisors of degree i.

3. Results. Let us now answer the question in Section 1 of this note only in the case of $n=5$ and of $n=7$. Since we need to estimate the number of prime divisors of degree one, we will start by proving the following theorem.

Theorem 1. Let F be a finite field $GF(q)$ of characteristic $\neq 2$. Given an odd number $n>1$, let K be a hyperelliptic function field over F defined by an equation $y^2=x^n+a$ ($a \neq 0$, $a \in F$). Let N_1 denote the number of prime divisors of degree one. Then, we have $N_1 = q+1$ if n and $q-1$ are coprime.

Proof. Since n is odd, there exists only one infinite prime divisor of K. So we get the formula as follows;

\[
N_1 = 1 + \# \{(a, \beta) \in F \times F \mid \beta^2 = a^n + a \}
\]

where $\# S$ means the number of elements in S.

Moreover, for the sake of convenience, we will denote by F^* the multiplicative group of non-zero elements of F. Then it is easy to verify that $\{a^n \mid a \in F^*\} = F^*$. This is due to the assumption $(q-1, n) = 1$ and to the fact that F^* is a cyclic group of order $q-1$. Therefore, we have $\{a^n \mid a \in F\} = F$, so we see $\{a^n + a \mid a \in F\} = F$.

This equality means that

\[
\# \{(a,0) \in F \times F \mid a^n + a = 0\} = 1 \quad \text{and} \quad \# \{(a, \beta) \in F \times F \mid \beta^2 = a^n + a, \ \beta \neq 0\} = q-1
\]

because of the fact that the number of elements of the form β^2 ($\beta \in F^*$) equals to $(q-1)/2$ and that we can associate such a element β^2 with two prime divisors of degree one of K. Thus, by making use of the formula (3) above, we obtain $N_1 = 1 + (q-1) = q+1$. Theorem 1 is thereby proved.

Now let us turn to our question in Section 1. As an application of Theorem 1, we can easily answer our question for $n=5$ in the affirmative. In fact, we will prove the following theorem.

Theorem 2. Let $F = GF(p)$ be a finite prime field of characteristic $p \neq 2$. Let $K = F(x, y)$ be a hyperelliptic function field over F defined by an equation $y^2 = x^5 + a$ ($a \neq 0$, $a \in F$). Denote by h the class number of K. Then we have $h = p^2 + 1$ and $L(u) = 1 + p^2u^4$ if $p \equiv 2$ or $3 \mod 5$.

Proof. We will indicate by \(N_i \) \((i=1,2)\) the number of prime divisors of degree \(i \) in \(K \). Moreover we will denote a constant field extension of \(K \) of degree two by \(\overline{K} \) and also the number of prime divisors of degree one of \(\overline{K} \) by \(\overline{N}_1 \). By means of our assumption \(p \equiv 2 \) or \(3 \mod 5 \), it is obvious that \((p-1,5)=1\) and \((p^2-1,5)=1\).

Then, applying Theorem 1 to \(K \) and \(\overline{K} \), we have \(N_1=p+1 \) and \(\overline{N}_1=p^2+1 \). Thus we see \(N_2=p(p-1)/2 \) in view of the fact that the relation among \(N_1, N_2, \overline{N}_1 \) is given by \(\overline{N}_1 = N_1 + 2N_2 \). Hence we can easily obtain \(a_1 = a_2 = 0 \) because of the formula (2). In particular \(L(u)=1+p^3u^4 \). Therefore the formula (1) leads to \(h=p^3+1 \). This completes the proof of Theorem 2.

Finally we will give an affirmative answer to our question in the case of \(n=7 \).

Theorem 3. Let \(F=GF(p) \) be a finite prime field of characteristic \(p \neq 2 \). Let \(K=F(x,y) \) be a hyperelliptic function field over \(F \) defined by an equation \(y^2=x^7+a \) \((a \neq 0, a \in F)\). Denote by \(h \) the class number of \(K \). Then we have \(h=p^3+1 \) and \(L(u)=1+p^3u^8 \) if \(p \equiv 3 \) or \(5 \mod 7 \).

Proof. We will denote by \(N_i \) \((i=1,2,3)\) the number of prime divisors of degree \(i \) of \(K \). Let \(\overline{K} \) and \(\overline{K} \) be constant field extensions of \(K \) of degree two and of three respectively. Moreover, denote by \(\overline{N}_1 \) and \(\overline{N}_1 \) the numbers of prime divisors of \(\overline{K} \) and of \(\overline{K} \) respectively. Then \(N_2 \) and \(N_3 \) are explicitly given by

\[
N_2=N_1+2N_2 \quad \text{and} \quad \overline{N}_1=N_1+3N_3.
\]

By means of our assumption \(p \equiv 3 \) or \(5 \mod 7 \), we can obviously obtain \((p-1,7)=1, (p^2-1,7)=1 \) and \((p^5-1,7)=1\). Therefore, as applications of Theorem 1 to \(K, \overline{K} \) and \(\overline{K} \), we have \(N_1=p+1, \overline{N}_1=p^2+1 \) and \(\overline{N}_1=p^3+1 \). It follows from the formula (4) above that \(N_2=p(p-1)/2 \) and \(N_3=p(p^2-1)/3 \). Thus, by making use of the formulas (2), it is easy to get that \(a_1=a_2=a_3=0 \). Hence we see \(L(u)=1+p^3u^8 \) and \(h=p^3+1 \) in view of the formula (1). Therefore Theorem 3 is completely proved.

References