<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>ボルツマンランヂバン方程式</td>
</tr>
<tr>
<td>著者</td>
<td>福山 豊</td>
</tr>
<tr>
<td>引用</td>
<td>長崎大学教育学部自然科学研究報告 1976年 vol.27, p.19-22</td>
</tr>
<tr>
<td>発行日</td>
<td>1976-02-29</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/32812</td>
</tr>
</tbody>
</table>

 удал된 데이터는 다음 웹사이트에서 확인하실 수 있습니다。

http://naosite.lb.nagasaki-u.ac.jp
Boltzmann-Langevin Equation

Yutaka FUKUYAMA

Department of Physics, Faculty of Education
Nagasaki University, Nagasaki

Abstract

We have studied that the Fox-Uhlenbeck Ansatz, which expresses how the correlation function of random force is related to the collision operator, can be derived from Mori theory which is a microscopic theory of the Boltzmann-Langevin equation with its random force term.

§ 1 Introduction

Landau and Lifshitz proposed the fundamental equations of fluctuation phenomena in fluids, using thermodynamic fluctuation theory in relation to the linearized hydrodynamic equations.1) Fox and Uhlenbeck2) and Bixon and Zwanzig3) postulated a generalization of the linearized Boltzmann equation with a fluctuation term based on the theory of the Gaussian Markov process. The assumption of general statistical properties concerning this term is more or less ad hoc, and its meaning remains dark.

In this note, we present that the Fox-Uhlenbeck Ansatz,4) which expresses how the correlation function of random force is related to the collision operator, can be derived from the Mori theory5) which is a microscopic theory of the Boltzmann-Langevin equation with its random force term.

§ 2 Microscopic theory of the Boltzmann-Langevin equation

The fundamental state variables are the particle density in μ space

$$n(p, r; t) = \sum_{j=1}^{N} \delta(p_j(t) - p) \delta(r_j(t) - r),$$

where $p_j(t)$ and $r_j(t)$ are the momentum and position of the j-th particle at time t, respectively. Mori has introduced a coarse grained particle density $A(p, r; t)$ by replacing $\delta(r_j - r)$ in (1) by the coarse-grained δ function 5

$$\Delta(r_j - r) = (1/V) \Sigma' \sum_{q} \exp[-iq \cdot (r_j - r)],$$

where V is the volume of the system. $\Sigma' q$ is the sum over the wave vectors q whose magnitudes are smaller than $1/\lambda$, where λ is a characteristic length which is larger...
than the linear range \(r_0 \) of the intermolecular force but is semi-macroscopic length. Mori has been presented the fundamental equation for the kinetic description of the dilute gases, if there are no external force, as follows:\(^5\)

\[
\frac{\partial}{\partial t} A(p,r;t) + \frac{p}{m} \nabla A(p,r;t) = C[A(p,r;t)] + R_p(t),
\]

\[
C[A(p,r;t)] = \int dp_2 g_{21} \int_0^\infty db \int_0^{2\pi} d\phi \phi [A(p',r',t) A(p''r'',t) - A(p',r,t) A(p'',r'',t)],
\]

where \(m \) is the mass of a molecule and \(g_{21} = |p_2 - p_1|/m \) and \(b \) is the impact parameter and \(\phi \) the azimuth, and \(p'_i (i=1,2) \) is the momentum of the molecule \(i \) in the resulting collision. The fluctuation force \(R_p(t) \) is characterized by

\[
\langle R_p(t) R_{p'}(0) ; a \rangle = 2 \gamma_{pp'}(a) \delta(t),
\]

where

\[
\gamma_{pp'}(a) = \int_0^\infty \langle R_p(s) R_{p'}(0) ; a \rangle ds.
\]

\(\langle G ; a \rangle = \langle G \delta(A-a) \rangle / \langle \delta(A-a) \rangle \) denotes the conditional average of \(G \) with a fixed value of \(A \).

When \(A(p,r;t) \) is near the Maxwell equilibrium distribution

\[
f_{eq}(p) = n_{eq} \left(\frac{2 \pi m k_B T_{eq}}{2 \pi} \right)^{3/2} \exp \left(- \frac{p^2}{2 m k_B T_{eq}} \right),
\]

where \(n_{eq} \) is the equilibrium density, \(T_{eq} \) is the equilibrium temperature, and \(k_B \) is the Boltzmann constant, one can write

\[
A(p,r;t) = f_{eq}(p) [1 + h(p,r;t)].
\]

Thus \(h(p,r,t) \) fulfills the linearized Boltzmann equation

\[
\frac{\partial h}{\partial t} + \frac{p}{m} \nabla h = D[h(p,r;t)] + \bar{R}_p(t),
\]

where

\[
D[h(p,r;t)] = C[A(p,r,t)] / f_{eq}(p)
\]

\[
= \left[\int f_{eq}(p_2) g \delta(g,\theta) [h(p_1',r,t) + h(p_2',r,t) - h(p_1,r,t) - h(p_2,r,t)] d\Omega dp_2, \right.
\]

\[
\left. \left. - h(p_2,r,t) \right] d\Omega dp_2, \right.
\]

and

\[
\bar{R}_p(t) = R_p(t) / f_{eq}(p).
\]

\(g \) is the relative velocity which turns the angle \(\theta \) in the solid angle \(d\Omega \) during the collision and \(I(g, \theta) \) is the differential collision cross section, which depends on the intermolecular force.

\section*{§ 3 Correlation function of random force}

Now we can also express another form for \(C[A(p,r;t)] \),\(^5\)

\[
C[A(p,r;t)] = \int dp' dr' \left[- \beta_0 \gamma_{pr'}(A) X_{pr'}(A) + \frac{\partial}{\partial A(p',r';t)} \gamma_{pr'}(A) A(p,r,t) \right],
\]

where \(X_{pr}(A) \) is the thermodynamic force for the coarse-grained density \(A(p,r,t) \)

\[
X_{pr}(A) = - \frac{1}{\beta_0} \frac{\partial \ln w(A)}{\partial A(p,r,t)}.
\]
where $\beta_0 = 1/k_B T_{eq}$ and $w(a) = \langle \delta (A-a) \rangle$.

When the system is close to the complete equilibrium, the thermodynamic force takes the form

$$X_{pr}(A) = h(p, r; t)/\beta_0.$$ \hfill (14)

In the case of dilute gases we can assume that

$\langle R_{pr}(t)R^*_{pr'}(0);a\rangle = \langle R_{pr}(t)R^*_{pr'}(0)\rangle = 2\gamma_{pr} \delta(r-r')\delta(t).$ \hfill (15)

Then we have

$$D[h(p, r; t)] = -\int dp' \gamma_{pr} p' h(p', r; t)/f_{eq}(p)$$

$$= -\int dp' \Gamma(p, p') f_{eq}(p') h(p' r; t),$$

where

$$\Gamma(p, p') = \gamma_{pr} f_{eq}(p) f_{eq}(p').$$

One then obtains

$$\frac{\partial h}{\partial t} + \frac{p}{m} \frac{\partial h}{\partial r} = -\int dp' \Gamma(p, p') f_{eq}(p') h(p' r; t) + R_{pr}(t),$$

and, for the correlation function of random force,

$$\langle R_{pr}(t)R^*_{pr'}(0)\rangle = 2\Gamma(p, p') \delta(t) \delta(r-r'),$$

or

$$\langle R_{pr}(t)R^*_{pr'}(0)\rangle = 2\gamma_{pr} \delta(t) \delta(r-r').$$

The right-hand side of (1) may be written in the form

$$-\int dp' f_{eq}(p') K(p, p') h(p', r; t).$$

The kernel $K(p, p')$ is symmetric, isotropic and has nonnegative eigenvalues. This fact was first shown by Hilbert for the case of a gas of rigid elastic spherical molecules and later by Enskog for the general case. Thus we can consider that $\Gamma(p, p')$ is the same as the kernel $K(p, p')$ and (19) is the linearized Boltzmann equation with fluctuation. In this case, the correlation function of random force is characterized by the kernel $\Gamma(p, p')$ as (20). These equations furnish a source for a random force term introduced by Fox and Uhlenbeck in the Boltzmann equation.

References