<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>C2H5-X(X=Cl,Br,I)およびC2H5-X-H(X=O,S)のRaman,IRならびにNMR-II: C2H5-X-H(X=O,S)のRaman,IRおよびNMR</td>
</tr>
<tr>
<td>著者</td>
<td>浜田・圭之助・森下・浩史</td>
</tr>
<tr>
<td>卷</td>
<td>長崎大学教育学部自然科学研究報告 vol.27, p.52-60; 1976</td>
</tr>
<tr>
<td>引用</td>
<td>http://hdl.handle.net/10069/32817</td>
</tr>
</tbody>
</table>

※NAOSITE: 長崎大学の研究者発表情報提供システム
Abstract

One would expect ethanol to belong to point group C_5, if the molecule (C_2H_5-X-H) has the highest symmetry. The number, species and activity of the fundamentals of C_2H_5-X-H on the assumption of the C_5 structure is $13A^1(R, p; IR) + 8A^2(R; IR)$. However the obtained spectra of C_2H_5-X-H can never be explained on the basis of C_5 selection rules, but can be assigned on the basis of the C_{3v} symmetry, in which CH$_2$ group rotates freely with respect to the three H atoms of CH$_3$ group. The irreducible representations of C_{3v} symmetry for CH$_3$-Y-X-H (Y=CH$_2$) is $5A_1(R, p; IR) + 5E(R; IR)$. In addition to these, a few fundamentals should appear due to CH$_2$ group. The non-rigid structure with rotating CH$_2$ group is in good accordance with that derived from the NMR spectrum.

II-1 序 論

メタノール(CH$_3$OH), メタンチオール(CH$_3$SH) およびメタンセレノール(CH$_3$SeH) の振動スペクトルについては、可成りの研究が為されているが、C_3H_5-X-H タイプ分子についての研究は少ない。そしていずれの文献も C_2H_5-X-H は C_5 構造をもつとしている。しかししながら、著者の測定した C_2H_5-X-H のスペクトルは C_5 選択則により説明するには、余りにも単純すぎるように思えた。そこで C_2H_5-X-H の構造を決定するために、その振動スペクトルを構造関連の C_2H_5 (X=ハロゲン), およびCH$_3$-X-H (X=O, S) の振動スペクトルとの比較において研究した。

II-2 実 験

試料はすべて市販品を購入して、蒸留により精製した。ただしCH$_3$SeH は文献に従って合成した。測定装置は I-2 に同じ。

II-3 結果および考察

II-3-1 振動スペクトル

CH$_3$I が C_{3v} 構造を持つことは論を俟たないところである。事実その振動スペクトル (Fig. II -1, II -2) は C_{3v} 選択則によって完全に帰属された (Table II-1, II-2)。CH$_3$-X-H の構造については C_5 であると報告されているが、測定された振動スペクトルは、バンド数、ラマンのpolarization state, 赤外バンドの包絡線などすべて、C_{3v} 構造に対して理論的に予想されるところと完全に一致している (Table II-1, II-2)。本論文 I に示したように C_2H_5-X については、そのスペクトルは CH$_3$-X のものと酷似しており、CH$_2$ を一つの回転体と考えた構造 ($\sim C_{3v}$) を考えることにより説明できた。C_2H_5-X-H の振動スペクトルを、上記の CH$_3$I, CH$_3$OH, C_2H_5I のスペクトルと対比して Fig. II-1 に示した。一見して、互いに非常に良く似ていると
Fig. II-1 Raman and infrared spectra of CH$_3$-I, CH$_3$-O-H, CH$_3$-CH$_2$-O-H and CH$_3$-CH$_2$-I
Fig. II-2 Raman and infrared spectra of CH$_3$Br, CH$_3$SH, C$_2$H$_5$Br and C$_2$H$_5$SH
Table II-1 Symmetry species, selection rules and frequency assignments of vibrations of CH$_3$I, CH$_3$OH, C$_2$H$_5$OH and C$_2$H$_5$I

<table>
<thead>
<tr>
<th>C$_3v$</th>
<th>Form of Vibration</th>
<th>CH$_3$I</th>
<th>CH$_3$-O-H</th>
<th>CH$_3$-X-O-H</th>
<th>CH$_3$-X-I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raman</td>
<td>IR</td>
<td>Raman</td>
<td>IR</td>
</tr>
<tr>
<td>A</td>
<td>ν_sO-H</td>
<td>nil</td>
<td>nil</td>
<td>(p)3330m</td>
<td>(</td>
</tr>
<tr>
<td></td>
<td>ν_sCH</td>
<td>(p)2947vs</td>
<td>(</td>
<td></td>
<td>)2978vs</td>
</tr>
<tr>
<td></td>
<td>δ_sCH$_3$</td>
<td>(p)1237s</td>
<td>(</td>
<td></td>
<td>)1253vs</td>
</tr>
<tr>
<td></td>
<td>ν_{as}C(X)-O-H(I)</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>ρ_1C(X)-O-H(I)</td>
<td>(p)522vs</td>
<td>(</td>
<td></td>
<td>)535m</td>
</tr>
<tr>
<td>E</td>
<td>ν_sCH$_3$</td>
<td>(d)3040w</td>
<td>(⊥)3075w</td>
<td>(d)2993m</td>
<td>(⊥)2993m</td>
</tr>
<tr>
<td></td>
<td>δ_sCH$_3$</td>
<td>(d)1425w</td>
<td>(⊥)1477m</td>
<td>(d)1475w</td>
<td>(⊥)1480w</td>
</tr>
<tr>
<td></td>
<td>δC-X-O(I)</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>ρ_1CH$_3$</td>
<td>(d)882w</td>
<td>(⊥)886s</td>
<td>(?)(1114vw</td>
<td>(?)(1105vw</td>
</tr>
<tr>
<td></td>
<td>ρ_1O-H</td>
<td>nil</td>
<td>(?)(1158vw</td>
<td>(?)(1347m</td>
<td>(?)(1115vw</td>
</tr>
<tr>
<td></td>
<td>Torsion</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>$2 \times \delta_s$CH$_3$</td>
<td>(p)2820w</td>
<td>(</td>
<td></td>
<td>)2845m</td>
</tr>
<tr>
<td></td>
<td>νCH$_2$</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>δCH$_2$</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>ρ_1CH$_2$</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
</tbody>
</table>

#1) The very considerable difference between the frequency of Raman and of infrared is due to the difference between hydrogen bonding in liquid state and that in gaseous one.

#2) This band should be (⊥) type band. A clear account is not given of this violation of selection rules.

#3) This band seems to be overlapped with ν_sCH$_3$ band.

(??) means that polarization state or band contour is ambiguous.
Table II-2 Symmetry species, selection rules and frequency assignments of vibrations of
CH$_3$-Br, CH$_3$-S-H, CH$_3$-CH$_2$-S-H and CH$_3$-CH$_2$-Br

<table>
<thead>
<tr>
<th>C$_3$v</th>
<th>Form of Vibration</th>
<th>CH$_3$-Br</th>
<th>CH$_3$-S-H</th>
<th>CH$_3$-Y-S-H</th>
<th>CH$_3$-Y-Br</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raman</td>
<td>IR</td>
<td>Raman</td>
<td>IR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ν_3CH$_3$</td>
<td>(p)2959vs</td>
<td>(p)2953vs</td>
<td>(p)1298m</td>
<td>(p)2960m</td>
</tr>
<tr>
<td></td>
<td>δ_3CH$_3$</td>
<td>nil</td>
<td>nil</td>
<td>(p)1338m</td>
<td>(p)1268m</td>
</tr>
<tr>
<td></td>
<td>ν_4C-X-(S(Br))</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>ν_4C-X-S(Br)</td>
<td>(p)596vs</td>
<td>(p)712vs</td>
<td>(p)712vs</td>
<td>(p)657vs</td>
</tr>
<tr>
<td></td>
<td>ν_4C-Y-(S(Br))</td>
<td>(p)3050m</td>
<td>(p)3020s</td>
<td>(p)1045m*1</td>
<td>(p)865m*1</td>
</tr>
<tr>
<td></td>
<td>δ_4CH$_3$</td>
<td>(d)2960m</td>
<td>(d)2960m</td>
<td>(d)1056m</td>
<td>(d)775vw</td>
</tr>
<tr>
<td></td>
<td>ν_4C-Y-(S(Br))</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>ρ_1CH$_3$</td>
<td>(d)1417m</td>
<td>(d)1455m</td>
<td>(d)1056m</td>
<td>(d)1455m</td>
</tr>
<tr>
<td></td>
<td>ρ_1CH$_2$</td>
<td>(d)1056m</td>
<td>(d)1056m</td>
<td>(d)1056m</td>
<td>(d)1056m</td>
</tr>
<tr>
<td></td>
<td>ρ_1CH$_2$*1</td>
<td>(p)812vs*1</td>
<td>(p)812vs*1</td>
<td>(p)812vs*1</td>
<td>(p)812vs*1</td>
</tr>
<tr>
<td>Torsion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2$\times$$\delta_4CH_3$</td>
<td>(p)2840m</td>
<td>(p)2840m</td>
<td>(p)2840m</td>
<td>(p)2840m</td>
<td>(p)2840m</td>
</tr>
<tr>
<td>νCH$_2$</td>
<td></td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>δCH$_2$</td>
<td></td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>ρ_1CH$_2$*1</td>
<td></td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>P-R separation</td>
<td></td>
<td>26</td>
<td>30</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

*1) see the foot note*1 in the text.
(?) means that polarization state or band contour is ambiguous.
とが分る。C₂H₅-X-H に対して考えやすい構造および既約表現は次の通りである。

\[
\begin{align*}
 C_5: & \quad 13A'(R,p; IR)+8A^*(R; IR) \\
 C_2: & \quad 9A(R,p; IR)+12B(R; IR) \\
 C_1: & \quad 21A(R,p; IR)
\end{align*}
\]

測定して得たスペクトルはバンド数、ラマンの polarizations state, 赤外の包絡線など、すべての点において上記 C₅, C₂, C₁ 何れの選択則によっても説明できない。縮重振動を持つところ、もっと高対称分子の振動を示しているように思われる。

C₂H₅-X-H の NMR スペクトルは CH₃ の 3 つのプロトン、CH₂ 基の 2 つのプロトンが分子内回転により、それぞれ等価であると考えれば説明できないことはよく知られている事実である。したがって CH₃-C₂H₅-X-H の CH₂ が回転することにより 1 つの回転体を形成し、CH₃-Y-X-H (Y=CH₂) の加え C₅ が構造となると考えることも可能である。C₅ の既約表現は 5A₁(R, p; IR)+5E(R; IR) であり、CH₃-C₂H₅-X-H の基準振動はこれに CH₂ に由来する振動が加わるわけである。以下内部回転を伴う C₅ 構造に基づき振動の帰属をここでみる。

A₁ バンド …… A₁ 種に属するバンドは、赤外では平行（∥）バンド、ラマンでは（p）バンドである。CH₃ 対称伸縮振動（ν₃CH₃）に、C₂H₅OH では（p）2928cm⁻¹ ラマン、（∥）2908cm⁻¹ 赤外帯を、C₂H₅SH では（p）2930cm⁻¹ ラマン、2930cm⁻¹ 赤外帯を帰属した。X-H 伸縮振動（ν₁X-H）については、CH₃-X-H のスペクトルと比較することにより C₂H₅OH では（p）3310cm⁻¹ ラマン、（∥）3700cm⁻¹ 赤外帯が、C₂H₅SH では（p）2572cm⁻¹ ラマン、（∥）2593赤外帯が帰属されることが一見して明らかである。CH₂ 対称変角振動（δₐCH₂）は1300～1400cm⁻¹付近に現われることは周知の事実で、C₂H₅OH, C₂H₅SH に対しては、それぞれ～1380cm⁻¹,（p）1268cm⁻¹ ラマン、（∥）1394cm⁻¹,（∥）1278cm⁻¹ 赤外バンドがこれに充てられる。C-Y-O 対称伸縮振動（ν₃C-Y-O）には CH₃ の ν₃C-I, CH₂OH の ν₃C-O-H, C₂H₅OH の ν₃C-Y-I との比較から（p）527cm⁻¹ ラマン、（∥）310cm⁻¹ 赤外バンドが帰属されることが明らかである。同様にして ν₃as C-Y-S には（p）657cm⁻¹ ラマン、（∥）666cm⁻¹ 赤外帯を帰属した。C-Y-X 対称伸縮振動（ν₃asC-X-X）は ν₃asC-X-X より高波数側にあるはずで、しかも CH₃-X および CH₃-X-H にはこれに対応するバンドは無いところから、（p）1100cm⁻¹,（p）1090cm⁻¹,（？）1100cm⁻¹,（∥）1102cm⁻¹ 赤外バンドをこれに帰属した。

E バンド …… 此の種に属するバンドは、ラマンでは（d）バンドで赤外では垂直（⊥）タイプバンドである。CH₃ 非対称伸縮振動（ν₃asCH₃）に帰属できるバンドは（d）2975cm⁻¹,（d）2960cm⁻¹ ラマン、（？）2990cm⁻¹, ～2960cm⁻¹ 赤外帯は明らかでない。

CH₃ 非対称変角振動（δₐCH₃）1450cm⁻¹ 付近に現われるのはで、したがって（d）1457cm⁻¹,（d）1445cm⁻¹ ラマン、（⊥）1450cm⁻¹,（d）1458cm⁻¹ 赤外バンドがこれに帰属される。C-Y-X 变角振動（δasC-Y-X）は CH₃-X および CH₃-X-H には現われないことから帰属した（Table II-1, II-2, X-H 横すべり振動（p₃X-H）については、CH₃-X-H のラマンの比較において（？）1115cm⁻¹,（p）732cm⁻¹ ラマン、（？）1067cm⁻¹,（？）737cm⁻¹赤外バンドを帰属した。CH₃ 横すべり振動（p₃CH₃）には、（？）1278cm⁻¹,（p）1865cm⁻¹ ラマン、（？）865cm⁻¹,（？）1242cm⁻¹,（？）873cm⁻¹
赤外バンドを充てた。

倍音およびFermi 共鳴……表II-1、II-2に示したように δCH₃ の倍音が現われているが、これ等は δCH₂ との間に Fermi 共鳴を生じるため、その強度が大で基準振動バンドと見なされることがしばしばある。

CH₃ 基の振動……当然のことであるが CH₃-X、CH₃-X-H には現われない。CH₃-CH₃-X-H および CH₃-CH₂-X の CH₂ 基に由来する振動は、CH₂ 基に由来する振動に波数が近いこと、また CH₃-X、CH₃-X-H には現われない点を考慮して表II-1、II-2のように帰属した。

II-3-2 NMR スペクトル

測定した C₂H₅-X-H (X = O,S) の NMRスペクトルをFig. II-2に示す。OH のシグナルが非常に低磁場側にあるのは、水素結合に関係しているプロトンの特徴である。SH のシグナルは OH よりはるかに高磁場側に現われている。SH のシグナルは たまたま CH₃ のシグナル (τ値 8.7付近) に重なっているが、このシグナル強度は CH₂ の強度の 2 倍であり、4 個のプロトンのものであることからも明らかである。なお OH シグナルは Ⅰ-Ⅰカップリングを示していないが、SH は CH₂ のプロトンとの Ⅰ-Ⅰカップリングにより三重線を示している。カップリング定数が等しいことはそれぞれ
C_2H_5-X (X=Cl, Br, I)およびC_2H_5-X·H (X=O, S)のRaman, IRならびにNMR

II-4 結 論

C_2H_5-X-Hの振動スペクトルが、予想される対称C_3v、C_2およびC_1何れによっても説明できないが、分子内回転を考慮してCH_3-(Y)-X-H (Y=CH_3) のような構造と考えた場合、測定されたスペクトルはC_3v選択則によって容易に帰属できた。分子内回転により、見掛け上の対称が固定された分子から考えうるものより、高対称になることが振動スペクトルに見られると報告した論文もあり、特にCH_3-CH_2-X-HのNMRスペクトルはCH_3基の3つのHおよびCH_2基の2つのHが分子内回転により、お互いに等価であると考えれば説明できないという広く知られている事実もある。

さらにC原子の基底状態は1s^22s^22p^2で2s軌道の電子1個が2p軌道に励起されることがより、それぞれ孤立電子を持つ2s、2p_x、2p_yおよび2p_z軌道となり、2sと2p_x軌道の混成により180°の結合角を持つ-C-が生じる。そして2p_y、2p_z軌道がそれぞれ2個のH原子の1s軌道と結合することによりCH_2基を生じる。すなわち、H_3C-C-X-H (X=O, S)という構造は理論的にも可能である。これまでC_2H_5-X-Hに考えられた構造は、図II-3(a)のエタン置換体と

(a)

(b)

Fig. II-4 Structures of C_2H_5-X-H
して考えられていたが、振動スペクトルは明らかに図Ⅱ-3(b)のCH₂基を内部回転による1つの回転体と考えたCs₄構造に由来するものであるし、NMRスペクトルも図Ⅱ-2(a)の構造でないと説明され得ない。

平行タイプ(∥)赤外バンドのP-R分離値として、それぞれ表に記載した値が測定されている。Cs₄構造であれば(∥)バンドはあり得ないので*2、このことをもCs₄構造を支持する有力な証拠である。

本研究に使用したレーザー・ラマン分光器は、文部省科学研究費補助金により購入したものである。当局に深く感謝の意を表するものである。

文 献

*2) Cs₄の分子軸が、Cs₃₄の分子軸に殆ど一致するので、(∥)バンドは出現すると云う人もあるが、結晶のところCs₃₄であると云っていることに外ならない。