<table>
<thead>
<tr>
<th>Title</th>
<th>A Note on Class Numbers of Elliptic Function Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Washio, Tadashi</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学教育学部自然科学研究報告, vol.26, p.1-4; 1975</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975-02-28</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/32848</td>
</tr>
<tr>
<td>NAOSITE</td>
<td>http://naosite.lb.nagasaki-u.ac.jp</td>
</tr>
</tbody>
</table>
A Note on Class Numbers of Elliptic Function Fields

Tadashi Washio

The Department of Mathematics, Faculty of Education,
Nagasaki University, Nagasaki

(Received October 31, 1974)

Abstract

Let \(m \) be an arbitrary fixed positive integer. It is shown that there exist infinitely many prime numbers \(p \) for which we formally get an elliptic function field over \(\text{GF}(p) \) with the class number \(p+1 \) divisible by \(m \).

\[\text{§1. Theorems} \]

Let \(p \) be a prime number larger than three. Let \(k \) be the prime field \(\text{GF}(p) \) of characteristic \(p \) and let \(K \) be an elliptic function field over \(k \). Then it is well known that the generating equation of \(K=k(x, y) \) is expressible as the Weierstrass' normal form

\[y^{2} = 4x^{3} - g_{2}x - g_{3} \]

where \(g_{2}, g_{3} \in k \) and \(g_{2}^{3} - 27g_{3}^{2} \neq 0 \). (See M. Eichler [2; p. 200]).

In this note we shall consider the class number of \(K \) under the restriction \(g_{2}g_{3} = 0 \). Then, by the properties of the Hasse invariant, we can concisely prove the following theorem which we proved in [4] in a disorderly manner on the basis of the elementary number theory.

Theorem 1. Let \(p \) be a prime number satisfying \(p \geq 3 \). Let \(K \) be an elliptic function field over \(k=\text{GF}(p) \). Denote by \(h \) the class number of \(K \).

(1) If the generating equation of \(K \) is

\[y^{2} = 4x^{3} - a, \quad (a \in k, a \neq 0), \]

then a necessary and sufficient condition for the equality \(h = p + 1 \) is the congruence \(p \equiv 2 \mod 3 \).

(2) If the generating equation of \(K \) is

\[y^{2} = 4x^{3} - ax, \quad (a \in k, a \neq 0), \]

then a necessary and sufficient condition for the equality \(h = p + 1 \) is the congruence \(p \equiv 3 \mod 4 \).

This theorem is useful in giving many examples of algebraic function fields with the class numbers divisible by a fixed integer. As an application of Theorem 1 we
can actually get the following theorem.

Theorem 2. Let \(m \) be an arbitrary fixed positive integer. Then there exist infinitely many prime numbers \(p \) for which we can formally get an elliptic function field over \(GF(p) \) with the class number \(p+1 \) divisible by \(m \).

Furthermore, we can extend Theorem 2 as follows.

Theorem 3. Let \(m \) and \(n \) be arbitrary fixed positive integers. Then there exist infinitely many prime numbers \(p \) for which we can formally get an elliptic function field over \(GF(p) \) whose class number is divisible by \(m \) and can be put in the form \(p^n+1-(\sqrt[-n]{p})^n(1+(-1)^n) \).

§ 2. **Proof of Theorem 1**

We shall prove Theorem 1 in this section. Let \(p \) be a prime number larger than three. Let \(K \) be an elliptic function field over \(k=GF(p) \). We shall indicate the class number of \(K \) by \(h \) and the Hasse invariant by \(A \). Then the relation between \(h \) and \(A \) is given by the following lemma.

Lemma 1. A necessary and sufficient condition for \(h=p+1 \) is \(A=0 \).

Proof. We shall denote by \(N \) the number of prime divisors of degree one in \(K \). Since \(K \) is elliptic, it is well known that

\[h=N \quad \text{and} \quad |p+1-N| \leq 2\sqrt{p} \]

hold. (See M. Eichler[2 ; pp. 303-306]). This inequality means, because of \(p>3 \), that \(N=p+1 \) holds if and only if \(N \equiv 1 \mod p \) holds.

Moreover, we proved in [3] that \(N \equiv 1 \mod p \) holds if and only if \(A=0 \) holds. Therefore a necessary and sufficient condition for \(N=p+1 \) is \(A=0 \). Thus, by making use of \(h=N \), we get lemma 1.

In order to prove Theorem 1, we shall also need the following lemma.

Lemma 2. (i) If the generating equation of \(K \) is

\[y^2=4x^3-a, \quad (a \in k, \ a \neq 0), \]

then \(A=0 \) holds if and only if \(p \equiv 2 \mod 3 \) holds.

(ii) If the generating equation of \(K \) is

\[y^2=4x^3-ax, \quad (a \in k, \ a \neq 0), \]

then \(A=0 \) holds if and only if \(p \equiv 3 \mod 4 \) holds.

Proof. Let the generating equation of \(K \) be generally

\[y^2=4x^3-g_2x-g_3. \]

Then, by a well-known result of M. Deuring[1 ; p. 255], \(A \) is equal to the coefficient of \(x^{-\frac{p-1}{2}} \) in the following polynomial in \(x^{-1} \).

\[(-g_2x^{-3}-g_2x^{-2}+4)^{\frac{p-1}{2}}. \]

Thus, in case (i) we easily obtain
A Note on Class Numbers of Elliptic Function Fields

\[A = \begin{cases} \frac{p-1}{2} & (-4^a) \neq 0 \text{ if } p \equiv 1 \mod 3, \\
\frac{p-1}{6} & \neq 0 \text{ if } p \equiv 1 \mod 3, \text{ and} \\
0 & \text{if } p \equiv 2 \mod 3. \\
\end{cases} \]

Similarly, in case (ii) we get

\[A = \begin{cases} \frac{p-1}{2} & (-4^a) \neq 0 \text{ if } p \equiv 1 \mod 4, \\
\frac{p-1}{4} & \neq 0 \text{ if } p \equiv 3 \mod 4, \text{ and} \\
0 & \text{if } p \equiv 3 \mod 4. \\
\end{cases} \]

Therefore Lemma 2 is completely proved.

Theorem 1 now follows immediately from Lemma 1 and Lemma 2.

§ 3. Proofs of Theorems 2 and 3

We shall prove Theorem 2 and Theorem 3 in this section.

Proof of Theorem 2. Let \(m \) be an arbitrary fixed positive integer. We shall assume that \(t=3 \) or \(t=4 \). Then, since \(tm \) and \(tm-1 \) are coprime, there exist infinitely many prime numbers \(p \) satisfying the congruence \(p \equiv tm-1 \mod tm \) by making use of the Dirichlet's theorem.

If we choose such a prime \(p \), it is obvious that \(p \equiv t-1 \mod t \) and \(m \mid p+1 \) where the notation \(c \mid d \) means that \(d \) is divisible by \(c \). So we shall put \(k=GF(p), \ K=k(x,y) \) and \(y^2=4x^3-ax \) or \(y^2=4x^3-ax^4 \), where \(a \) means an arbitrary non-zero element in \(k \), according as \(p \equiv 2 \mod 3 \) or \(p \equiv 3 \mod 4 \). Then the desired properties of \(K \) follow at once from Theorem 1; the class number \(h \) of \(K \) satisfies \(h=p+1 \) and \(m \mid h \). Theorem 2 is thereby proved.

Proof of Theorem 3. Proceeding as in the proof of Theorem 2, we shall denote by \(K^n \) the constant field extension of \(K \) of degree \(n \). Since \(k \) is finite, it is clear that \(K^n \) is an elliptic function field with \(GF(p^n) \) as its field of constants.

The class number \(h_n \) of \(K^n \) is divisible by \(h \). This is due to the fact that there is a degree preserving natural isomorphism of the divisor class group of \(K \) into the divisor class group of \(K^n \). Hence we get \(m \mid h_n \) because of \(m \mid h \). In order to compute \(h_n \), we shall consider the following polynomial in \(U \).

\[L(U)=1+(N-p)U+pu^2 \]

where \(N \) means the number of prime divisors of degree one in \(K \).

As is well known in M. Eichler [2; p. 305], if we put

\[L(U)=(1-w_1U)(1-w_2U) \]

then \(h_n \) is expressed by

\[h_n=p^n+1-(w_{1}^n+w_{2}^n). \]

Since \(N=h \) and \(h=p+1 \) hold in our case, we have
Therefore we get

\[h_n = \frac{p^* + 1 - (\sqrt{-p})^*}{1 + (-1)^n}. \]

This completes the proof of Theorem 3.

References