The Rotation-Vibrational Spectra and Structures of Ethane, and Dimethyl Ether, Sulphide, Selenide and Telluride

Keinosuke HAMADA and Hirofumi MORISHITA
Faculty of Education, Nagasaki University, Nagasaki 852

(Received October 31, 1974)

Abstract

There are two possible configurations for H₃C-X-CH₃ (X=O,S,Se,Te), linear or bent C-X-C, the latter having C₂ᵥ symmetry. For a linear model the methyl groups may be staggered, D₃d or eclipsed, D₃h. A bent model, C₂ᵥ allows 21 fundamentals, all of which are active in Raman and 17 of which are active in infrared. This means that a C₂ᵥ symmetry should have 17 coincidences between Raman and infrared spectra among 21 fundamental frequencies.

The obtained spectra indicate the general simplicity of the spectra and the lack of coincidence between Raman and infrared frequencies. In addition, the rotation-vibrational band contours consist of a family of Q branches having an intensity alternation for degenerate infrared ones, which indicates the existence of C₂ᵥ symmetry about the C-X-C axis of rotation. Consequently, the linear models are strongly supported for H₃CXCH₃ type molecules and, of the linear configurations, the eclipsed D₃h form is eliminated, because a D₃h symmetry should indicate the coincidence between Raman and infrared frequencies in E' species. Above all, it seems to the authors sufficient evidence to justify a linear skeleton for H₃CXCH₃ that an intensity alternation in Q branch sequence of perpendicular band (Eᵥ) is observed.

However the final decision must await the results of the further studies, because structure of H₃CXCH₃ type molecule has been determined from electron diffraction and microwave spectroscopy to be approximately C₂ᵥ symmetry.

The Raman spectra are recorded on JEOL JRS-S1B spectrophotometer using Ar⁺ laser and the infrared spectra are measured with Shimadzu IR-450 spectrometer, whose gas cell had a path of 10 cm and KRS-5 windows.

1. Introduction

There are two possible structures for C-X-C skelton, linear or bent, the latter
having \(C_{2v} \) symmetry. For a linear model the methyl groups may be staggered, \(D_{3d} \); eclipsed, \(D_{3h} \); or there may be free rotation, \(D'_{3h} \). \(D_{3h} \) and \(D'_{3h} \) are governed by the same selection rules.\(^1\) A bent model, \(C_{2v} \), allows 21 fundamentals, all of which are active in Raman and 17 of which are active in infrared. Accordingly a \(C_{2v} \) symmetry should have 17 coincidences between Raman and infrared spectra among 21 fundamental frequencies. The obtained spectra indicate the lack of coincidence between Raman and infrared frequencies, which means the existence of symmetry center, and the general simplicity of the Raman and infrared spectra. Consequently a \(C_{2v} \) symmetry and of the linear configurations, the eclipsed \(D_{3h} \) symmetry which has coincidence between Raman and infrared in \(E' \) species are eliminated.

On the other hand, the Raman and infrared spectra of \(\text{H}_3\text{C}-\text{X}-\text{CH}_3 \) (\(\text{X}=\text{O},\text{S},\text{Se},\text{Te} \)) type molecules have hitherto been investigated and assigned on the basis of \(C_{2v} \) symmetry. The present authors have therefore found it worthwhile to investigate the structures of \(\text{H}_3\text{C}-\text{X}-\text{CH}_3 \) type molecules by studying the vibrational spectra and by comparing the spectra with those of structurally related molecule ethane (\(D_{3d} \)).\(^2\)

2. Experimental

Dimethyl ether (\(\text{H}_3\text{C}-\text{O}-\text{CH}_3 \)) was prepared by dehydration of methanol with concentrated 98% sulphuric acid, and dimethyl selenide (\(\text{H}_3\text{C}-\text{Se}-\text{CH}_3 \)) was synthesized according to the literature.\(^3\) The other samples, dimethyl sulphide (\(\text{H}_3\text{C}-\text{S}-\text{CH}_3 \)) and ethane (\(\text{H}_3\text{C}-\text{CH}_3 \)) were purchased from commercial sources and used after being purified by distillation or low temperature distillation.

Raman spectra are recorded on \(\text{JEOL JRS-SIB} \) spectrometer using argon ion laser (4888 Å), and the infrared spectra are measured with \(\text{Shimadzu IR-450} \) spectrometer, whose gas cell had a path of 10 cm and \(KRS-5 \) windows.

3. Results and Discussion

The observed vibrational spectra of \(\text{H}_3\text{C}-\text{CH}_3, \text{H}_3\text{C}-\text{O}-\text{CH}_3, \text{H}_3\text{C}-\text{S}-\text{CH}_3 \) and \(\text{H}_3\text{C}-\text{Se}-\text{CH}_3 \) are shown in Fig. 1 and the frequencies of fundamental bands are given in Table 1*\(^1,4\) together with the relative intensities, the states of polarization of Raman bands, the band type of infrared ones, and \(D_{3d} \) and \(D_{3h} \) selection rules.

3-1 Ethane\(^2,5-10\)

There are two plausible configurations for ethane; \(D_{3h} \) model in which there is a plane of symmetry perpendicular to the three fold C–C axis, and \(D_{3d} \) model with a center of symmetry. For the \(D_{3d} \) symmetry whose irreducible representations is \(3A_g(R,p)+2A_u(IR)+3E_g(R)+3E_u(IR) \), the rule of mutual exclusion holds. For the \(D_{3h} \) model, on the other hand, whose irreducible representations is \(3A_1'(R,p)+2A_2'(IR)+3E'(R)+3E'(R,IR) \), the doubly degenerate vibrations (\(E' \)) exhibit both Raman and

*1) The spectra of dimethyl telluride are cited from the literature.\(^4\)
infrared activity.

Eight or nine Raman bands are observed for the gas, some of which may correspond to overtone or combination bands, and the obtained spectra indicate the lack of coincidence between Raman and infrared frequencies. This seems to be sufficient

Fig. 1 Rotation-vibrational spectra of CH₃CH₃ and H₃CXCH₃ (X=O,S,Se,Te)
Table 1 Description, Character, Species, Activity and Bond Type of the Normal Vibrations of H₃C-CH₃ and H₃C-X-CH₃ (X=O,S,Se,Te)

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Band Type, Activity</th>
<th>Description</th>
<th>Polarization State</th>
<th>H₃C-CH₃</th>
<th>H₃C-O-CH₃</th>
<th>H₃C-S-CH₃</th>
<th>H₃C-Se-CH₃</th>
<th>H₃C-Te-CH₃*</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{3h}</td>
<td>D_{3d}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{1}'</td>
<td>A_{1z}</td>
<td>$\nu_{a}CH₃$</td>
<td>(p)</td>
<td></td>
<td>(p) 2952vs</td>
<td>(p) 3000vs</td>
<td>(p) 2912vs</td>
<td>(p) 2922vs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\delta_{a}CH₃$</td>
<td>(p)</td>
<td>(p) 1185w</td>
<td>(p) 1246w</td>
<td>(p) 1325w</td>
<td>(p) 1285m</td>
<td>(p) 1228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ν_{a}C-(X)-C</td>
<td>(p)</td>
<td>(p) 995vs</td>
<td>(p) 929vs</td>
<td>(p) 690vs</td>
<td>(p) 585vs</td>
<td>(p) ?</td>
</tr>
<tr>
<td>A_{2}'</td>
<td>A_{1z}</td>
<td>Torsion</td>
<td>(450)*</td>
<td>(277)*</td>
<td>(230)*</td>
<td>(198)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{1}</td>
<td>E_{2}</td>
<td>$\nu_{a}CH₃$</td>
<td>(dp)</td>
<td>2975m</td>
<td>3020m</td>
<td>2985m</td>
<td>2995m</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\delta_{a}CH₃$</td>
<td>(dp)</td>
<td>1470m</td>
<td>1456s</td>
<td>1433m</td>
<td>1425w</td>
<td>1420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\rho_{a}CH₃$</td>
<td>(dp)</td>
<td>800w</td>
<td>1122m</td>
<td>740m</td>
<td>600m</td>
<td>528</td>
</tr>
<tr>
<td>E'</td>
<td>E_{2}</td>
<td>$\nu_{a}CH₃$</td>
<td>(D_{3h})</td>
<td>(1)</td>
<td>3016vs(1)</td>
<td>2916vs(1)</td>
<td>2980vs(1)</td>
<td>3015vs(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\delta_{a}CH₃$</td>
<td>(D_{3h})</td>
<td>1480m(1)</td>
<td>1460m(1)</td>
<td>1445s(1)</td>
<td>1438s(1)</td>
<td>1426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\rho_{a}CH₃$</td>
<td>(D_{3h})</td>
<td>(1)</td>
<td>824m(1)</td>
<td>1096m(1)</td>
<td>1030m(1)</td>
<td>958m(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ_{C-X-C}</td>
<td>(D_{3h})</td>
<td>(1)</td>
<td>(no)</td>
<td>933m(1)</td>
<td>696w(1)</td>
<td>625w(1)</td>
</tr>
</tbody>
</table>

*(D₃h) indicates that E' band of D_{3h} is Raman active, but E_u one of D_{3d} is Raman inactive.

(1) shows parallel type band and (1), perpendicular type one. (no) means that H₃CCH₃ does not have this vibration and (),* that the band is inactive but appears due to interaction among molecules.
Rot.-Vibr. Spectra and Struct. of H₃C-CH₃ and H₃C-X-CH₃ (X=O,S,Se,Te)

Evidence to exclude the D_{3d} model. Therefore the D_{3d} model\[^{[2]}\] is assumed in subsequent discussion.

3-1-1 Raman Bands

3-1-1-1 A_{1g} Bands —— The three Raman active fundamentals belonging to A_{1g} species should give rise to polarized bands. The strong polarized Raman band at 2896 cm\(^{-1}\) is not fundamental, but one of Fermi doublet (3-1-1-3). Accordingly there can be no doubt that the strong polarized band at 2952 cm\(^{-1}\) which is the only strong polarized one in 3000 cm\(^{-1}\) region is the symmetric methyl stretching vibration (ν_{s}CH₃), since only one totally symmetric fundamental is expected in this region. The weak polarized band at 1185 cm\(^{-1}\) is assigned to the symmetric methyl deformation (δ_{s}CH₃), since the δ_{s}CH₃ bands of H₃C-X-CH₃ (X=O,S,Se,Te) usually appear at 1200~1300 cm\(^{-1}\) as weak polarized band. It is to be noted that in the case of dimethyl acetylene (H₃C-\(\equiv\)C-CH₃)\[^{[11]}\], like those of H₃C-X-CH₃, the 1380 cm\(^{-1}\) fundamental band which is assigned to δ_{s}CH₃ appears in the Raman effect. There remains the symmetric C-C stretching vibration (ν_{s}C-C), to which the polarized 995 cm\(^{-1}\) band is easily assigned.

3-1-1-2 E_{g} Bands —— The three Raman active fundamentals belonging to E_{g} species should give rise to depolarized bands. These can be readily identified with the three depolarized bands at 2975(ν_{as}CH₃), 1470(δ_{as}CH₃) and 800(ρ_{s}CH₃) cm\(^{-1}\), since only one fundamental which is expected in 3000 cm\(^{-1}\) region is the asymmetric methyl stretching vibration (ν_{as}CH₃), the asymmetric methyl deformation (δ_{as}CH₃) are remarkably constant (ca.1450 cm\(^{-1}\)) throughout the molecules having methyl group and there remains the methyl rocking (ρ_{s}CH₃), to which 800 cm\(^{-1}\) band should be assigned.

3-1-1-3 Overtone and Combination Bands —— The polarized Raman band at 2896 cm\(^{-1}\) might be considered as fundamental, but the bands at 2896 and 2952 cm\(^{-1}\) form a doublet due to a Fermi resonance\[^{[12]}\], whose center coincides very nearly with twice the wave number of the δ_{as}CH₃ band at 1470 cm\(^{-1}\). Therefore the 2896 cm\(^{-1}\) band is not fundamental, but the (p)2952 cm\(^{-1}\) band corresponds to one fundamental only (3-1-1-1). The overtone is usually found to be medium, therefore the strong intensity of the overtone at 2896 cm\(^{-1}\) seems due to a strong Fermi resonance of 2×δ_{as}CH₃ band with 2952 cm\(^{-1}\) fundamental one. The polarized bands at 2775 and at 2740 cm\(^{-1}\) seem due to overtone or combination, since only the symmetric methyl stretching mode is expected to lie in this region and the mode has already been assigned.

3-1-2 Infrared Bands

3-1-2-1 A_{2u} Bands —— This species contains two vibrations giving rise to parallel infrared bands having P, Q, and R branches. The asymmetric methyl stretching band occurs, as expected, at 2963 cm\(^{-1}\), whose $P-R$ separation is observed to be 38 cm\(^{-1}\) as shown in Fig. 2. The methyl deformation vibration band occurs at 1380 cm\(^{-1}\) as expected. The P and R branches of this band are not observed, but the sharp Q branch shows clearly that the vibration is a parallel one.

\[^{[2]}\] The literature\[^{[2]}\] strongly supports the D_{3d} model for ethane.
3-1-2-2 E_a Bands The three infrared active fundamentals should give rise to perpendicular type bands, which consists of a family of Q branches having an intensity alternation which indicates the existence of C_3 symmetry about the CC axis of rotation. The infrared bands at 3016, 1480 and 824 cm$^{-1}$ can be readily assigned to

![Image of infrared bands](image)

Fig. 2 The Band Shape of Infrared Parallel(\parallel) and Perpendicular(\perp) Bands of $\text{H}_3\text{C-CH}_3$, $\text{H}_3\text{C-O-CH}_3$, $\text{H}_3\text{C-S-CH}_3$ and $\text{H}_3\text{C-Se-CH}_3$

, gas state:, soln./CCl$_4$
\(\nu_{s\text{CH}_3}, \delta_{as\text{CH}_3} \) and methyl rocking (\(\rho_{s\text{CH}_3} \)), since they are the perpendicular type bands and there are no other such fundamentals.

3-1-2-3 Overtone and Combination Bands …… The parallel type bands at 2903 and 2963 cm\(^{-1}\) form a doublet due to a Fermi resonance\(^{12}\) of 2\(\times 1480 \) with 2963 cm\(^{-1}\) band. The \(P-R \) separation of the 2903 cm\(^{-1}\) band is observed to be 38 cm\(^{-1}\), too. The 2760 cm\(^{-1}\) band which is a parallel type band seems to be assigned to 2 \(\times \) \(\delta_{s\text{CH}_3} \) (\(A_{2u} \)).

3-1-3 Summary

As mentioned above, the obtained spectra of ethane can be explained according to \(D_{3d} \) selection rules and the assignments for ethane are given in Table I.

3-2 Dimethyl Ether\(^{14-20}\)

Dimethyl ether (H\(_3\text{C-O-CH}_3\)) is considered as a derivative in which CH\(_3\) group is connected to CH\(_3\) in opposite direction along the z axis and an oxygen atom is inserted between the two CH\(_3\) groups. Consequently for a linear C-O-C model, the vibrational spectra of H\(_3\text{C-OCH}_3\) should be similar to those of H\(_3\text{C-CH}_3\), except being added an asymmetric C-O-C stretching and a C-O-C bending band. However there are two possible configurations for dimethyl ether (H\(_3\text{C-O-CH}_3\)), linear or bent C-O-C. The symmetry of H\(_3\text{C-O-CH}_3\) would be \(C_{2v} \) if C-O-C is bent, and would be \(D_{3d} \) or \(D_{3h} \) if C-O-C is linear. For a \(C_{2v} \) symmetry whose irreducible representations is 7\(A_1(R;\rho;IR) + 4A_2(R) + 6B_1(R;IR) + 4B_2(R;IR) \), all 21 fundamentals are allowed in the Raman effect (7 of them as polarized lines) and 17 fundamentals are allowed in infrared absorption. The irreducible representations of a \(D_{3d} \) symmetry is 3\(A_{1g}(R,\rho) + 3A_{2u} (IR) + 3E_g(R) + 4E_u(IR) \), indicating the general simplicity of the Raman and infrared bands which are mutually exclusive. The irreducible representations of a \(D_{3h} \) is 3\(A_1'(R,\rho) + 3A_2''(IR) + 3E_a'(R) + 4E' (R;IR) \), which is different from that of the \(D_{3d} \) in \(E' \) (\(E_u \) for \(D_{3d} \)) species which are both Raman and infrared active.

The observed spectra of H\(_3\text{C-O-CH}_3\) shown in Fig. 1 are too simple to be explained on the basis of \(C_{2v} \) symmetry and are very similar to those of H\(_3\text{C-CH}_3\) in every point of views, except the few additional bands which are due to C-O-C stretching and bending vibrations. Especially the obtained bands seem to be mutually exclusive in Raman and infrared. Therefore the consequent discussions shall be given on the basis of \(D_{3d} \) symmetry, though the all previous references\(^{14-20}\) support \(C_{2v} \) symmetry for H\(_3\text{C-O-CH}_3\).

3-2-1 Raman Bands

3-2-1-1 \(A_{1g} \) Bands …… The three Raman active fundamentals belonging to \(A_{1g} \) species should give rise to polarized bands. Dimethyl ether has more Raman bands at 3000 cm\(^{-1}\) region than H\(_3\text{C-CH}_3\), H\(_3\text{C-S-CH}_3\) and H\(_3\text{C-Se-CH}_3\). This reason shall be mentioned in section 3-2-1-3. Anyway it can seen that the assignment of \(\nu_{s\text{CH}_3} \) which should lie at 3000 cm\(^{-1}\) region is difficult due to appearance of many polarized bands at 3000 cm\(^{-1}\) region. Therefore the polarized 3000 cm\(^{-1}\) band tentatively assigned to \(\nu_{s\text{CH}_3} \). The weak polarized band at 1246 cm\(^{-1}\) seems to be due to the symmetr-
ic methyl deformation ($\delta_3 CH_3$), as compared with that of H_3C-CH_3 which is the weak polarized band at 1185 cm$^{-1}$ (3-1-1-1). The polarized band at 929 cm$^{-1}$ can be assigned to the symmetric C-O-C stretching, compared with $\nu C-C$ of H_3C-CH_3, $\nu C-S-C$ of $H_3C-S-CH_3$ and $\nu C-Se-C$ of $H_3C-Se-CH_3$.

3-2-1-2 E_g Bands The three Raman active fundamentals belonging to E_g species should give rise to depolarized bands. The asymmetric CH$_3$ stretching mode ($\nu_4 CH_3$) of the species should lie at 3000 cm$^{-1}$ region, therefore the band at 3020 cm$^{-1}$ which is depolarized can be assigned to $\nu_4 CH_3$. The asymmetric CH$_3$ deformation ($\delta_4 CH_3$) of this species presumably lies near 1450 cm$^{-1}$, therefore the depolarized 1456 cm$^{-1}$ band can be assigned to $\delta_4 CH_3$. This was also the case in H_3C-CH_3, as was mentioned in section 3-1-1-2. There remains the CH$_3$ rocking ($\rho_4 CH_3$), to which the depolarized 1112 cm$^{-1}$ band is assigned.

3-2-1-3 Violation of Selection Rules and Fermi Resonance There are five polarized bands in 3000 cm$^{-1}$ region. Two of them form a doublet due to a Fermi resonance12, the one of which is due to $\nu_3 CH_3$ and the another of which, due to overtone of $\delta_3 CH_3$ (E_g) as mentioned in section 3-1-1-3. The remains may be due to the overtone of $\delta_3 CH_3$ (E_g) or due to a violation of the selection rules for D_{3d} by intermolecular forces.

The Raman band at 450 cm$^{-1}$ is considered as a torsion (A_{1u}). This mode should be forbidden in both Raman and infrared, but it may be that the appearance is due to a violation of the selection rules for D_{3d} by intermolecular forces. This intermolecular forces may be stronger in $H_3C-O-CH_3$ than in H_3C-CH_3, $H_3C-S-CH_3$ and $H_3C-Se-CH_3$, because of hydrogen-bond like forces in $H_3C-O-CH_3$. This is the reason why the violation of the selection rules occurs even in gas state of H_3COCH_3 and more bands at 3000 cm$^{-1}$ and 450 cm$^{-1}$ regions appear in H_3COCH_3 than in H_3CCH_3 and H_3CXCH_3 ($X=S,Se$).

3-2-2 Infrared Bands

3-2-2-1 A_{2u} Bands This species contains three vibrations giving rise to parallel infrared bands having P, Q, and R branches. The CH$_3$ stretching band occurs, as expected, at 3007 cm$^{-1}$, which is near frequencies of the $\nu_4 CH_3$ (A_{1g}) vibration. The $P-R$ separation of this band is observed to be 28 cm$^{-1}$ as shown in Fig. 2. The parallel type band at 1178 cm$^{-1}$ (Q-branch) whose $P-R$ separation is observed to be 28 cm$^{-1}$ can be assigned to $\delta_4 CH_3$, compared with those of H_3C-CH_3 and of $H_3C-X-CH_3$ ($X=S,Se,Te$). The band at 1116 cm$^{-1}$ shows only the sharp Q-branch, because the P and R branches may be overlapped with neighbor bands. This band can be assigned to the asymmetric C-O-C stretching ($\nu_4 C-O-C$). This assignment is in agreement with those of some authors$^5, 15, 13$), but in disagreement with that of the other author$^{13, 20}$, in which the 1116 cm$^{-1}$ band is considered as R branch of 1096 cm$^{-1}$ band assigned to $\nu_4 C-O-C$. However the latter assignment20 is questionable for the

*3) However they say that the molecule of dimethyl ether has C_{2v} symmetry.
following reasons: The \(P-Q \) separation should be equal to the \(Q-R \) one in a parallel type band having \(P, Q \) and \(R \) branches. However that is not the case. Therefore the 1116 cm\(^{-1} \) band cannot be assigned as a \(R \) branch. And it is evident that the 1116 and 1096 cm\(^{-1} \) bands of \(\text{H}_3\text{C}-\text{O}-\text{CH}_3 \) correspond to the 974 and 1030 cm\(^{-1} \) ones of \(\text{H}_3\text{C}-\text{S}-\text{CH}_3 \) and to the 912 and 958 cm\(^{-1} \) ones of \(\text{H}_3\text{C}-\text{Se}-\text{CH}_3 \), when the spectrum of \(\text{H}_3\text{C}-\text{O}-\text{CH}_3 \) is compared with those of \(\text{H}_3\text{C}-\text{S}-\text{CH}_3 \) and \(\text{H}_3\text{C}-\text{Se}-\text{CH}_3 \). Accordingly the 1116, 974 and 912 cm\(^{-1} \) bands can be assigned to \(\nu_{\text{as}}\text{C}-\text{X}-\text{C}(X=\text{O, S, Se, Te}) \), and the 1096, 1030 and 958 cm\(^{-1} \), to \(\rho_{\text{CH}_3} \).

3-2-2-2 \(E_u \) Bands ······· These are infrared active and Raman inactive. These should give rise to perpendicular type bands, which consists of a family of \(Q \) branches as \(\delta_{\text{as}}\text{CH}_3(E_u)(1480 \text{ cm}^{-1}) \) of \(\text{H}_3\text{C}-\text{CH}_3 \) shows. Therefore the bands at 2916, 1460, 1096 and 933 cm\(^{-1} \) whose band contours show a perpendicular type band as shown in Fig.2, are assigned to \(\nu_{\text{as}}\text{CH}_3 \), \(\delta_{\text{as}}\text{CH}_3 \), \(\rho_{\text{CH}_3} \) and \(\delta\text{C-O-C} \), respectively.

3-2-2-3 Overtone and Fermi Resonance ······· The parallel type bands at 2824 and 3007 cm\(^{-1} \) form a doublet due to a Fermi resonance. The \(P-R \) separation of the band at 2824 cm\(^{-1} \)(\(2 \times \delta_{\text{as}}\text{CH}_3 \)) is observed to be 28 cm\(^{-1} \) which is equal to that of \(\delta_{\text{as}}\text{CH}_3(A_{2u}) \) bands of \(\text{H}_3\text{C}-\text{O}-\text{CH}_3 \).

3-2-3 Summary

The spectra of \(\text{CH}_3\text{OCH}_3 \) are too simple to permit satisfactory assignments according to the selection rules of \(C_{2v} \) symmetry which allow 21 fundamentals to be active in the Raman effect and 17 of them to appear in the infrared spectrum, since the observed Raman spectrum shows only seven lines that can plausively be assigned to fundamental vibrations. Above all, it strongly supports \(D_{3d} \) model for \(\text{H}_3\text{C}-\text{O-CH}_3 \) that there is no coincidence between Raman and infrared frequencies.

3-3 Dimethyl Sulfide, Selenide and Telluride\(^4,\ 21-25\)

The spectra of \(\text{H}_3\text{C}-\text{S}-\text{CH}_3 \) and \(\text{H}_3\text{C}-\text{Se}-\text{CH}_3 \) are measured by the present authors, but the band frequencies of \(\text{H}_3\text{C}-\text{Te}-\text{CH}_3 \) are cited from the literature\(^4\).

3-3-1 Vibrational Spectra

The vibrational spectra of \(\text{H}_3\text{C}-\text{S}-\text{CH}_3 \), \(\text{H}_3\text{C}-\text{Se}-\text{CH}_3 \) and \(\text{H}_3\text{C}-\text{Te}-\text{CH}_3 \) can be assigned according to \(D_{3d} \) selection rules as shown in Table 1, compared with those of \(\text{H}_3\text{C}-\text{CH}_3 \) and \(\text{H}_3\text{C}-\text{O-CH}_3 \), and taken consideration of the polarization states, the band contours and the fact that the \(\nu_{\text{as}}\text{CH}_3 \) and \(\nu_{\text{CH}_3} \) in 3000 cm\(^{-1} \) region, and the \(\delta_{\text{as}}\text{CH}_3 \) in 1450 cm\(^{-1} \) region should remarkably be constant throughout the molecules, \(\text{H}_3\text{C}-\text{CH}_3 \), \(\text{H}_3\text{C}-\text{O-CH}_3 \), \(\text{H}_3\text{C}-\text{S}-\text{CH}_3 \) and \(\text{H}_3\text{C}-\text{Te}-\text{CH}_3 \) having methyl groups, and the doublets of such molecules which are due to a Fermi resonance between \(\nu_{\text{as}}\text{CH}_3(A_{2u}) \) and \(2 \times \delta_{\text{as}}\text{CH}_3 \) should appear in 2900 cm\(^{-1} \) region, respectively.

The frequencies of \(\nu_{\text{C}}-\text{X}-\text{C} \), \(\nu_{\text{as}}\text{C}-\text{X}-\text{C} \), \(\delta\text{C}-\text{X}-\text{C} \), and \(\rho_{\text{CH}_3}(X=\text{O, S, Se, Te}) \) decrease, as expected, in which the frequencies change in going from the lighter to the heavier atom. In addition, the band contours, the band types, the simplicity of the spectra and the mutual exclusion in Raman and IR are in excellent agreement with the theoretical expectations for \(D_{3d} \) model of \(\text{H}_3\text{C}-\text{X-CH}_3(X=\text{O, S, Se, Te}) \).
The Raman bands at 450 of H₅C-O-CH₃, 277 of H₅C-S-CH₃, 230 of H₅C-Se-CH₃ and 198 cm⁻¹ of H₅C-Te-CH₃ were assigned to δC-X-C. If the symmetries of H₅C-X-CH₃ were considered to be C₂ᵥ as indicated in the previous literature⁴). The δC-X-C band for C₂ᵥ should be polarized and be infrared active. However those bands of H₅C-X-CH₃ are observed to be depolarized⁴) and do not appear in infrared, therefore the above assignment⁴) seems to be doubtful. These can be assigned to the torsion(A₁₉), appearing in the Raman effect through a breakdown of the selection rules due to hydrogen-bond like force active even in the gas or due to intermolecular force active in the liquid. That is to say, this frequency would actually be permitted in the Raman effect even if the selection rules appropriate to D₃d configuration apply to H₅C-X-CH₃⁶).

3.3-2 Rotation-Vibrational Spectra

Ethane has D₃d symmetry, therefore parallel type bands(A₂ᵥ species) show a PQR structure with P-R separations of 38 cm⁻¹, whereas perpendicular type bands(Eᵥ species) exhibit a fine structure made up of closely spaced Q branches as shown in Fig. 2. If H₅C-X-CH₃ type molecules would have D₃d symmetry(linear model), the parallel type bands are expected to show a PQR structure, and perpendicular type bands, to exhibit a fine structure with a family of Q branches. Such rotation-vibrational details are observed in every ethers as follows; the parallel type bands(A₂ᵥ species) posses P,Q and R branches with P-R separations of 28 cm⁻¹ for H₅C-O-CH₃, of 25 cm⁻¹ for H₅C-S-CH₃ and of 22 cm⁻¹ for H₅C-Se-CH₃, and the perpendicular type bands(Eᵥ species) consist of a family of Q branches. The perpendicular bands of H₅C-CH₃ exhibit rotation-vibrational details with strong, weak, weak alternations which is sufficient to establish that the rotating species has C₃ symmetry about the axis of rotation¹³). On the other hand, such details of perpendicular bands are not so clearly observed in these ethers as in ethane, due to that the moments of inertia of the ethers are larger than those of ethane, however the band contours for perpendicular bands can be explained on the basis of D₃d selection rules.

4. Conclusion

The experimental results are in excellent agreement with the theoretical expectations for D₃d model of H₅C-X-CH₃(X=O,S,Se,Te), as mentioned above. However the only argument against D₃d model of these ethers is that the C-X-C chain should be bent, because the fact that the H₂O molecule is bent suggests strongly that the -O- chain is bent as well⁵). However it is possible to consider the 2s and 2pₗ orbitals in oxygen atom as being hybridized⁶) to be linear -O-. In addition, some literatures support

*⁴) The 450 cm⁻¹ band of H₅C-O-CH₃ seems to be polarized. This might be due to strong hydrogen-like force, too.

*⁵) The ground state of the oxygen atom is 1s²2s²2p⁴. In order to display a linear valence of two, the oxygen atom must have two electrons with uncoupled spins. The way to obtain this condition is to excite one of the 2s electrons into the 2p state, and to have the resulting 2p₁ electron with uncoupled spin, and 2p₂ and 2p₃ electrons with coupled spins. Then the 180° bond angle in C-O-C could be produced by mixing 50 per cent 2s¹ and 50 per cent 2p₁³⁹).
experimentally a linear -O- for gaseous Z-O-H (Z = K, Rb, Cs)\(^{27-30}\), Cl\(_3\)Si-O-SiCl\(_3\)\(^{31}\) and F\(_3\)Si-O-SiCl\(_3\)\(^{32}\). The literatures\(^{33-35}\) support the compounds having linear -Se- and -Te-. Accordingly it seems to be sure that these ethers have \(D_{3d}\) symmetry (linear C-X-C), but the final decision must await the results of the further study, because some literatures support \(C_2v\) model for H\(_3\)C-X-CH\(_3\) on the basis of microwave spectroscopy\(^{36-38}\) and of vibrational spectroscopy\(^{14-20}\), even if the assignments would be questionable as above mentioned.

Grateful appreciation is expressed for financial support of this work by the Science Research Fund of the Ministry of Education.

Correction : The assignment for 625 cm\(^{-1}\) infrared band of H\(_3\)C-Se-CH\(_3\) in Fig. 1 should be corrected to be \(\delta C\text{-Se}\text{-C}(E'')\) instead of \(\nu C\text{-Se}\text{-C}(A_{1g})\).
References

11) B. L. Crowford, Jr., *J. Chem. Phys.*, 7, 555 (1939)
33) D. P. Stevenson and V. Schomaker, *J. Amer. Chem. Soc.*, 62, 1267 (1940)