<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Anomaly of Hexachlorodisilane in Symmetric Si-Cl Stretching Frequency</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Hamada, Keinosuke; Morishita, Hirofumi</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学教育学部自然科学研究報告. vol.26, p.61-64; 1975</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975-02-28</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/32855</td>
</tr>
</tbody>
</table>

Example:

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>価値</td>
<td>12345</td>
</tr>
<tr>
<td>成果</td>
<td>67890</td>
</tr>
<tr>
<td>総合</td>
<td>12345</td>
</tr>
<tr>
<td>進歩</td>
<td>67890</td>
</tr>
</tbody>
</table>

Example:

久高海岸の研究で発見された新しい化学物質に関する詳細は、以下に掲載されています。

http://naosite.lb.nagasaki-u.ac.jp
Anomaly of Hexachlorodisilane in Symmetric Si-Cl Stretching Frequency and Its Vibrational Assignments

Keinosuke HAMADA and Hirofumi MORISHITA

Faculty of Education, Nagasaki University, Nagasaki 852

(Received October 31, 1974)

Abstract

The symmetric Si-Cl stretching of hexachlorodisilane, 352 cm\(^{-1}\) is found to be anomalously low when a comparison with those of some compounds containing SiCl\(_3\) groups is made. This anomaly seems due to intensive coupling of symmetric SiCl\(_3\) deformation with symmetric Si-Cl stretching and/or Si-Si stretching mode. On the basis of the above consideration, the vibrational assignments of hexachlorodisilane are tentatively done.

1. Experimental

The compounds used are obtained from commercial sources, except trifluorotrichlorodisiloxane (F\(_3\)SiOSiCl\(_3\)) and hexachlorodisilazane (Cl\(_3\)SiN(H)SiCl\(_3\)) synthesized according to the references.\(^1-5\)

The Raman spectrum is recorded on JEOL JRS-SIB spectrophotometer using argon ion laser and the infrared spectrum is measured with Shimadzu IR-450 spectrometer, whose window material is KRS-5.

2. Results and Discussion

The most prominent band in the Raman spectra of compounds containing SiCl\(_3\) groups has been observed to arise from symmetric Si-Cl stretching mode (\(\nu_4\)SiCl); this band is always strong and highly polarized and occurs in 450 cm\(^{-1}\) wave number region\(^4\), with which \(\nu_4\)SiCl would be identified. However there does not appear such a band in 450 cm\(^{-1}\) region for hexachlorodisilane(Cl\(_3\)SiSiCl\(_3\)). Therefore the very intensive and highly polarized band at 352 cm\(^{-1}\) can not help being assigned to the \(\nu_4\)SiCl for Cl\(_3\)SiSiCl\(_3\).\(^5-7\)

Figure 1 shows schematic Raman bands of some compounds containing SiCl\(_3\) groups.

The stretching force constants of \(\nu_4\)SiCl are approximately calculated from the
experimental vibration frequencies assuming XSi (X = O, N (H), Cl, F, H) as one particle and the vibration as simple two-body vibration of (XSi)-Cl. The values of the force constant for these compounds except Cl$_3$SiSiCl$_3$ are calculated to be $2.21 \sim 2.55 \times 10^{-5}$ dyn/cm, which seem to be reasonable value, compared with 2.71×10^{-5} of SiCl$_4$\(^6\)) and 2.60×10^{-5} dyn/cm of Cl$_3$SiOSiCl$_3$\(^5\)). However the force constant of ν_4SiCl for Cl$_3$SiSiCl$_3$ is calculated to be 1.15×10^{-5} dyn/cm using 352 cm$^{-1}$ assigned to ν_4SiCl
The calculated force constant is roughly a factor of two to two and a half times too small, which results from using too small frequency (352 cm\(^{-1}\)) for \(\nu_6\)SiCl of Cl\(_3\)SiSiCl\(_3\). The lowering of \(\nu_6\)SiCl frequency may be due to the mixing of symmetry coordinates which results in the simultaneous raising and lowering of the frequencies of two of the \(A_{1g}\) fundamentals, as follows; \(\nu_4\)Si–Si\((A_{1g})\) and \(\delta_6\)SiCl\(_3\)(\(A_{1g}\)), and \(\nu_6\)SiCl\((A_{1g}\) and \(\delta_6\)SiCl\(_3\)(\(A_{1g}\)), are coupled intensively, and so \(\nu_4\)Si–Si and \(\nu_6\)SiCl stretches involve considerable \(\delta_6\)SiCl\(_3\) motion. Accordingly the frequencies of \(\nu_4\)Si–Si and \(\nu_6\)SiCl modes are lower than would be expected for isolated \(\nu_4\)Si–Si and \(\nu_6\)SiCl, and that of \(\delta_6\)SiCl\(_3\), higher due to a corresponding rising. Consequently \(\nu_6\)SiCl and \(\delta_6\)SiCl\(_3\) bands would come closer to coalesce to be one band due to very strong coupling in Cl\(_3\)SiSiCl\(_3\).

Even in Cl\(_3\)SiOSiCl\(_3\), the coupling shall arise among \(\nu_6\)Si–O–Si\((A_{1g}\) and \(\delta_6\)SiCl\(_3\)\((A_{1g}\), and \(\nu_6\)SiCl\((A_{1g}\) and \(\delta_6\)SiCl\(_3\)(\(A_{1g}\), but it shall not be so strong in Cl\(_3\)SiOSiCl\(_3\). Because in Cl\(_3\)SiSiCl\(_3\), two silicon atoms are close together, whereas in Cl\(_3\)Si–O–SiCl\(_3\), they are separated by oxygen atom.

In Cl\(_3\)SiOSiCl\(_3\) and Cl\(_3\)SiSiCl\(_3\), the asymmetric Si–Cl stretching mode(\(\nu_{as}\)SiCl) \((A_{2u}\) is infrared active but silent in the Raman effect. The infrared band at 480 cm\(^{-1}\) is assigned to \(\nu_{as}\)SiCl in Cl\(_3\)SiOSiCl\(_3\). This mode lies well within the expected frequency range(ca. 450cm\(^{-1}\)), and the assignment of \(\nu_{as}\)SiCl places the frequency of \(\nu_{as}\)SiCl 58 cm\(^{-1}\) above 422 cm\(^{-1}\) of \(\nu_6\)SiCl. Such a large separation is to be expected if \(\nu_6\)SiCl

<table>
<thead>
<tr>
<th>Species</th>
<th>Normal Vibrational Modes</th>
<th>Reference 6)</th>
<th>Present authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{1g})</td>
<td>(\nu_4)Si–Si</td>
<td>((p)627m)</td>
<td>((p)625m)</td>
</tr>
<tr>
<td></td>
<td>(\nu_6)SiCl</td>
<td>((p)356s)</td>
<td>((p)354vs)</td>
</tr>
<tr>
<td></td>
<td>(\delta_6)SiCl(_3)</td>
<td>((p)136m)</td>
<td>((p)354vs)</td>
</tr>
<tr>
<td>(A_{1g})</td>
<td>Torsion</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(A_{2u})</td>
<td>(\nu_{as})SiCl</td>
<td>(\cdots)</td>
<td>464s</td>
</tr>
<tr>
<td></td>
<td>(\delta_{as})SiCl(_3)</td>
<td>(\cdots)</td>
<td>245m</td>
</tr>
<tr>
<td>(E_g)</td>
<td>(\nu_{as})SiCl</td>
<td>502m</td>
<td>(\cdots)</td>
</tr>
<tr>
<td></td>
<td>(\delta_{as})SiCl(_3)</td>
<td>215w</td>
<td>(\cdots)</td>
</tr>
<tr>
<td></td>
<td>(\rho_{as})SiCl (\rho_{as})SiCl</td>
<td>129m</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(E_u)</td>
<td>(\nu_{as})SiCl</td>
<td>(\cdots)</td>
<td>615vs</td>
</tr>
<tr>
<td></td>
<td>(\delta_{as})SiCl(_3)</td>
<td>(\cdots)</td>
<td>179m</td>
</tr>
<tr>
<td></td>
<td>(\rho_{as})SiCl (\rho_{as})SiCl</td>
<td>(\cdots)</td>
<td>75vvw</td>
</tr>
</tbody>
</table>

Table 1 Symmetry Species and Selection Rules of \(D_{3d}\). and Frequency Assignments of Cl\(_3\)SiSiCl\(_3\)

\((\)\) means this band is out of observational limit. \((^*)\) shows this band would be forbidden, but appears due to breakdown of the selection rules caused by intermolecular action.
mode is coupled with δ_SiCl_3 one and the frequency of ν_SiCl is lowered. Otherwise ν_SiCl and $\nu_{as}SiCl$ modes should lie very close together. In the case of Cl$_3$SiSiCl$_3$, the separation between $\nu_SiCl(A_{1g})$ and $\nu_{as}SiCl$(465 cm$^{-1}$)(A_{2u}) is 111 cm$^{-1}$. This shows, as above mentioned, that there occur very, very intensive coupling of the A_{1g} fundamentals of Cl$_3$SiSiCl$_3$.

The frequencies of symmetric SiCl$_3$ deformation (δ_SiCl_3) for Cl$_3$SiOSiCl$_3$, Cl$_3$SiN(H)SiCl$_3$ and F$_3$SiOSiCl$_3$ are 330, 328 and 344 cm$^{-1}$, respectively. On the other hand, the frequency of δ_SiCl_3 for Cl$_3$SiSiCl$_3$ has been reported to be 136 cm$^{-1}$, as shown in Table 1, which seems to be very low, compared with those of δ_SiCl_3 for the structurally similar molecules, Cl$_3$SiOSiCl$_3$, Cl$_3$SiN(H)SiCl$_3$ and F$_3$SiOSiCl$_3$. If the band at 354 cm$^{-1}$, as above mentioned, would be considered as the coalescent band of ν_SiCl and δ_SiCl_3, the frequency, 354 cm$^{-1}$ is reasonable for δ_SiCl_3 mode, whose frequency is expected to lie within 330 cm$^{-1}$ region, but is raised to 354 cm$^{-1}$ due to coupling of A_{1g} fundamentals. If the band at 136 cm$^{-1}$ is assigned to δ_SiCl_3 the band should be polarized one. Nevertheless the 132 cm$^{-1}$ band obtained looks like depolarized one. On the basis of the above discussion, the vibrational spectra of Cl$_3$SiSiCl$_3$ can be tentatively assigned as shown in Table 1. The new results require some minor adjustments in the earlier assignments.

Grateful appreciation is expressed for financial support of this work by the Science Research Fund of the Ministry of Education.

References