<table>
<thead>
<tr>
<th>Title</th>
<th>A note on k-modules in an algebraic function field K/k of one variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Washio, Tadashi</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学教育学部自然科学研究報告</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1972-02-29</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/33016</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
A Note on k-Modules in an Algebraic Function Field \(K/k \) of One Variable

Tadashi WASHIO

The Department of The Mathematics, Faculty of Education
Nagasaki University, Nagasaki

(Received October 31, 1971)

§ 1. Abstract.

Let \(K \) be an algebraic function field of one variable with a constant field \(k \). It is not necessary, in this note, that \(k \) is the exact constant field of \(K \). We shall denote by \(M \) a finitely generated \(k \)-module in \(K \).

Moreover \(n(M) \) denotes the denominator divisor of \(M \), i.e., \(n(M) \) is the divisor of \(K \) defined by

\[
\text{ord}_p n(M) = \max \{ \text{ord}_p n(x) \}
\]

\[
\text{ord}_x \neq 0
\]

for every prime divisor \(p \) of \(K \), where \(\text{ord}_p \) denotes the order at \(p \) and \(n(x) \) means the denominator divisor of \(x \). Then it is well-known that there exists some element \(x \) in \(M \) such that \(n(M) = n(x) \), if \(k \) contains enough elements. (e.g., E. Artin [1]; p. 318, Lemma 2).

The purpose of this note is to study it in minute detail. Under the condition \(d(n(M)) \leq |k| \), we shall prove that there exists an element \(x \) in \(M \) such that \(n(M) = n(x) \) in § 2, where \(d(n(M)) \) means the degree of \(n(M) \) and \(|k| \) denotes the number of all the elements contained in \(k \); if \(k \) is not finite, then we shall put \(|k| = \infty \). In § 3, we shall show that the above inequality is the best condition in a sense.

§ 2. Sufficient condition.

The notations being as in § 1, we shall prove the following theorem.

Theorem. If the inequality \(d(n(M)) \leq |k| \) holds, there exists some element \(x \) in \(M \) satisfying the equality \(n(M) = n(x) \).
Proof. In order to prove the theorem, we shall use the induction with respect to the dimension \(l \) of \(M \). In the case of \(l=1 \), there exists an element \(x \) in \(M \) satisfying \(M=k \cdot x \), where \(k \cdot x \) means the \(k \)-module generated by \(x \). If we take such an element \(x \), we have \(n(M)=n(x) \) obviously.

In the case of \(l \geq 2 \), we assume that the theorem is correct for every \(k \)-module \(M \) whose dimension is at most \(l-1 \). We can take a \(k \)-module \(\widetilde{M} \) of dimension \(l-1 \) in \(M \). So we shall take such a \(k \)-module \(\widetilde{M} \). Then there exists an element \(x_2 \) in \(M \) such that \(M=\widetilde{M}+k \cdot x_2 \). We shall take such an element \(x_2 \).

Since \(n(\widetilde{M}) \mid n(M) \) i.e., \(n(\widetilde{M}) \) divides \(n(M) \), the inequalities \(d(n(\widetilde{M})) \leq d(n(M)) \leq k \) hold trivially. So there exists an element \(x_1 \) in \(M \) such that \(n(\widetilde{M})=n(x_1) \) by the assumption of the induction.

This implies that \(n(\widetilde{M}) \) is the least common multiple of \(n(x_1) \) and \(n(x_2) \). For the equality \(M=\widetilde{M}+k \cdot x_2 \) means that \(n(M) \) is the least common multiple of \(n(\widetilde{M}) \) and \(n(x_2) \). By making use of this result, we shall show the existence of the elements \(a \) and \(b \) in \(k \) such that \(n(M)=n(ax_1+bx_2) \).

If \(n(x_1) \mid n(x_2) \) or \(n(x_2) \mid n(x_1) \), then \(n(M)=n(x_2) \) or \(n(M)=n(x_1) \) holds. If \(n(x_1) \) and \(n(x_2) \) are coprime, then \(n(M)=n(x_1+x_2) \) holds. Therefore it is enough for us to consider \(M \) only in the case that

\[
\begin{aligned}
(1) & \quad n(x_1)+n(x_2), \\
(2) & \quad n(x_2) \mid n(x_1) \quad \text{and} \\
(3) & \quad n(x_1) \text{ and } n(x_2) \text{ are not coprime}.
\end{aligned}
\]

Now we shall take a factorization of \(n(M) \) into prime divisors and we shall denote it by \(n(M)=\prod_{i=1}^{r} p_i^{e_i} \), where \(e_i \) is the integer \(\geq 1 \) for \(i=1, \ldots, r \). Moreover we assume that \(p_1, \ldots, p_m \) consist of all prime divisors \(p_i \) of \(K \) such that \(\text{ord}_{p_i} n(x_1)=\text{ord}_{p_i} n(x_2) \) holds. Obviously \(m \geq 1 \). Since (1),

\[
(2) \quad m+2 \leq r \leq d(n(M)) \text{ holds.}
\]

We shall denote by \(t_i \) a prime element of \(p_i \). Then obviously \(\text{ord}_{p_i} (x, t_i^{e_i}) = \text{ord}_{p_i} (x_2 t_i^{e_i}) = 0 \) for \(i=1, \ldots, m \). Moreover we shall denote by \((x, t_i^{e_i})_p \) and \((x_2 t_i^{e_i})_p \) the residue classes mod. \(p_i \) of \(x, t_i^{e_i} \) and \(x_2 t_i^{e_i} \) respectively. Then they are finite and are not 0.

Since the assumption of the theorem and (2), \(k \) has at least \(m+2 \) elements, whence we can take an element \(a \) in \(k \) such that \((x, t_i^{e_i})_p = a (x_2 t_i^{e_i})_p \) for \(i=1, \ldots, m \) and \(a \neq 0 \). We shall take such an element \(a \) in \(k \). Then \((x, t_i^{e_i}) \) and \((x_2 t_i^{e_i})_p \) are finite and is not 0, \((i=1, \ldots, m) \). This gives

\[
(3) \quad \text{ord}_{p_i} (x_i-a x_2) = -e_i \quad \text{for } i=1, \ldots, m.
\]

On the other hand, from \(a \neq 0 \),

\[
(4) \quad \text{ord}_{p_i} (x_i-a x_2) = \min \{ \text{ord}_{p_i} x_i, \text{ord}_{p_i} x_2 \} = -e_i \quad \text{for } i=m+1, \ldots, r.
\]
A Note on k-Modules in an Algebraic Function Field K/k of One Variable

Since every prime divisor other than p_1, \ldots, p_r does not divide $n(x_1-ax_2)$, the equalities (3) and (4) imply $n(x_1-ax_2)=n(M)$. The theorem is thereby proved.

§ 3. Consideration for the condition.

The assumption $d(n(M)) \leq |k|$ in the theorem is the best condition for M in a sense. In fact, it happens that we can not find an element x for a k-module M satisfying $d(n(M))=|k|+1$ such that $n(M)=n(x)$. So we shall show such an example.

We shall consider $K=k(x,y)$ satisfying $k=GF(5)$ and $y^2=x(x-1)(x-2)(x-3)(x-4)$. Let M be the k-module generated by $x_1=x/y$ and $x_2=(x-1)^2/y$.

Then, in order to investigate the denominator divisor of an element of the form ax_1+bx_2, $(a \in k, b \in k)$, it is sufficient for us to do only for six elements $x_1, x_2, x_1+x_2, x_1+2x_2, x_1+3x_2$ and x_1+4x_2.

We shall denote by p_a the prime divisor of K which divides the numerator divisor of $x-a$ for $a=0, 1, 2, 3, 4$. p denotes the prime divisor of K which divides $n(x)$. Then we obtain easily $\text{ord } p_1 x_1=\text{ord } p_2 x_2=5$, $\text{ord } p_3 (x_1+x_2)=\text{ord } p_4 (x_1+3x_2)=\text{ord } p_5 (x_1+4x_2)=1$ and $n(M)=p_1p_2p_3p_4p_5$.

Whence we can not find a k-linear combination of x/y and $(x-1)^2/y$ whose denominator divisor is $n(M)$. In this case, $|k|=5$ and $d(n(M))=6$ i.e., $d(n(M))=|k|+1$ holds.

Bibliography