A Note on Transcendental Elements of an
Algebraic Function Field of
One Variable

Tadashi WASHIO

The Department of the Mathematics, Faculty of Education.
Nagasaki University, Nagasaki

(Received October 31, 1971)

§ 1. Abstract

Let \(K \) be an algebraic function field of one variable with a constant field \(k \). We shall assume that \(K \) is separably generated over \(k \) and then we shall denote by \(x \) a separating element of \(K \) over \(k \).

The purpose of this note is to discuss the problem whether we can find the elements \(a, b, c, d \), in \(k \) satisfying \(ad - bc \neq 0 \) such that every prime divisor of \(K \) that divides the denominator divisor or the numerator divisor of the element of the form \(\frac{ax + b}{cx + d} \) is unramified over the rational function field \(k(x) \), or not.

It is obvious that we can find such elements if \(k \) is not finite. But it is impossible in general if \(k \) is finite. In § 2, we shall prove that there exist such elements in \(k \) under some condition, and we shall show that this is the best condition in a sense in § 3.

§ 2. Sufficient condition

Let \(k \) be a finite field and let \(K \) be an algebraic function field of one variable over \(k \). We shall denote by \(l \) the exact constant field, i.e., \(l \) is the algebraic closure of \(k \) in \(K \). So \(l \) is a finite extension of \(k \). Let \(x \) be a separating element of \(K \) over \(k \), i.e., \(K \) is a separable extension over \(k(x) \). Then we have the following lemma.

Lemma. \(g \) denotes the genus of \(K \) and \(N \) denotes the number of all prime divisors of \(K \) that are ramified over \(k(x) \). Then \(N \leq 2[K : l(x)] + 2g - 2 \) holds. Especially, if \(k \) is of characteristic 2, \(N \leq [K : l(x)] + g - 1 \) holds where
\([K : l(x)]\) means the degree of \(K\) over \(l(x)\).

Proof. Since \(x\) is a separating element of \(K\) over \(k\), the different \(b(K/k(x))\) of \(k\) over \(K(x)\), the different \(b(K/l(x))\) of \(K\) over \(l(x)\) and the different \(b(l(x)/k(x))\) of \(l(x)\) over \(k(x)\) exist. As well known,
\[
b(K/k(x)) = b(K/l(x)) \text{Con}_{l(x)/k} b(l(x)/k(x))
\]
holds, where \(\text{Con}_{l(x)/k}\) means the conorm of \(l(x)\) to \(K\). (e.g., C. Chevalley [1]; p. 75, Theorem 8).

\(l(x)\) is a separable constant field extension of \(k(x)\) and \(k\) is finite. Thus \(b(l(x)/k(x))\) is the unit divisor of \(K\), whence \(\text{Con}_{l(x)/k} b(l(x)/k(x))\) is so. (e.g., C. Chevalley [1]; pp. 69–72 and M. Deuring [2]; p. 124).

Therefore, we obtain the equality
\[
(1) \quad b(K/k(x)) = b(K/l(x)).
\]

Since \(k\) is finite, all and only prime divisors that are ramified over \(k(x)\) are the prime divisors of \(K\) which divide \(b(K/k(x))\). So the equality \((1)\) means that only these prime divisors appear in \(b(K/l(x))\).

Therefore \(N\) is at most the degree of \(b(K/l(x))\); i.e., \(N \leq 2[K : l(x)] + 2g - 2\). Especially, if \(k\) is of characteristic 2, then all prime divisors of \(K\) that are ramified over \(k(x)\) appear in \(b(K/l(x))\) at least with order 2. (e.g., C. Chevalley [1]; p. 69, Theorem 7).

This implies that \(N\) is at most the half degree of \(b(K/l(x))\); i.e., \(N \leq [K : l(x)] + g - 1\). The lemma is thereby proved.

We shall denote by \(|k|\) the number of the elements in \(k\). Moreover, for a non-zero element \(y\) of \(K\), \(\mathfrak{z}(y)\) denotes the numerator divisor of \(y\) and \(\mathfrak{n}(y)\) denotes the denominator divisor of \(y\). Then we shall prove the following theorem.

Theorem. If \(|k| \geq 2[K : l(x)] + 2g - 2\) holds, there exist elements \(a, b, c, d\) in \(k\) satisfying \(ad - bc \neq 0\) such that, for an element \(x\), of the form \(x = \frac{ax + b}{cx + d}\), all prime divisors of \(K\) that appear in the product \(\mathfrak{z}(x_i) \mathfrak{n}(x_i)\) are unramified over \(k(x)\). Especially, in the case that \(k\) is of characteristic 2, we can replace the above inequality by \(|k| \geq [K : l(x)] + g - 1\).

Proof. If all prime divisors of \(K\) are not ramified, the theorem is trivial. So we may assume that there exist ramified prime divisors. We shall denote by \(\{p_1, \ldots, p_t\}\) the set of all prime divisors of \(K\) that are ramified over \(k(x)\).

Then, by making use of the lemma and the assumption of the theorem, \(N \leq |k|\) holds. If each \(p_i\) does not appear in \(\mathfrak{z}(x) \mathfrak{n}(x)\), the theorem is obvious. So, we shall investigate only the three cases.
Case 1. Each $p_i (i=1,\ldots,N)$ does not divide $n(x)$ and some p_i divides $\delta(x)$.

We shall denote by x_{p_i} the residue class of x mod. p_i. Then, in this case, each $x_{p_i}(i=1,\ldots,N)$ is finite; i.e., each x_{p_i} is algebraic over I, whence it is algebraic over k.

From $|k|>N$, there exists an element a in k such that $x_{p_i} \neq a (i=1,\ldots,N)$. We shall take such an element a in k. Then $\text{ord}_{p_i}(x-a)=0 (i=1,\ldots,N)$ holds, where ord_{p_i} denotes the order at p_i. Therefore $p_i (i=1,\ldots,N)$ does not appear in $\delta(x-a)n(x-a)$.

Case 2. Each $p_i (i=1,\ldots,N)$ does not divide $\delta(x)$ and some p_i appears in $n(x)$.

In this case, $\delta(x)=n(\frac{1}{x})$ and $n(x)=\delta(\frac{1}{x})$. So this is reduced in the case 1. Thus there exists an element a in k such that each $p_i (i=1,\ldots,N)$ does not appear in $\delta(\frac{1}{x}-a)n(\frac{1}{x}-a)$.

Case 3. Some p_i divides $\delta(x)$ and another p_j divides $n(x)$.

We shall denote by $\{q_1,\ldots,q_s\}$ the set of all prime divisors p_i such that p_i does not divide $n(x)$. Then $x_{q_i} (i=1,\ldots,s)$ is finite. In this case, from $|k|>N$ $|k|>s$ hold, and $x_{q_i} (i=1,\ldots,s)$ is finite.

This implies that there exist at least two elements a, b in k which differ from $x_{q_i} (i=1,\ldots,s)$. We shall take such elements a, b in k. Then we have the equalities
\[
\text{ord}_{q_i}(x-a)=0 \quad (i=1,\ldots,s) \quad \text{and}
\]
\[
\text{ord}_{q_i}(x-b)=0 \quad (i=1,\ldots,s).
\]

So
\[
(2) \quad \text{ord}_{q_i}(\frac{x-a}{x-b})=0 \quad (i=1,\ldots,s) \quad \text{holds}.
\]

While, for any other p_j that differs from $q_i (i=1,\ldots,s)$,
\[
\text{ord}_{p_j}x=\text{ord}_{p_j}(x-a)=\text{ord}_{p_j}(x-b) \quad \text{holds; namely}
\]
\[
(3) \quad \text{ord}_{p_j}(\frac{x-a}{x-b})=0.
\]

Whence the equalities (2) and (3) follow
\[
\text{ord}_{p_i}(\frac{x-a}{x-b})=0 \quad (i=1,\ldots,N).
\]

Thus there exist a, b in k such that each $p_i (i=1,\ldots,N)$ does not appear in $\delta(\frac{x-a}{x-b})n(\frac{x-a}{x-b})$. In the above three cases, the elements which we got are of the form $\frac{ax+b}{cx+d}$ satisfying $ad-bc \neq 0$. Therefore the theorem is completely proved.
§3. Consideration for the conditions.

The assumptions \(|k| > 2[K : l(x)] + 2g - 2\) and \(|k| > [K : l(x)] + g - 1\) in the theorem are the best conditions for \(k\) in a sense. In fact, if the characteristic of \(k\) is an odd prime, then it happens to exist a function field satisfying \(|k| = 2[K : l(x)] + 2g - 3\) such that the theorem does not hold.

If \(k\) is of characteristic 2, then it happens to exist one satisfying \(|k| = [K : l(x)] + g - 1\) such that the theorem does not hold. So we shall show such examples.

Example 1. We shall put \(k = GF(q), q = p^n\) where \(p\) is an odd prime integer, \(y^a = \Pi(x-a)\) and \(K = k(x, y)\). Then we get \(|k| = q, l = k\) and \(g = \frac{q-1}{2}\), whence \(|k| = 2[K : l(x)] + 2g - 3 = q\) holds. Now we shall denote by \(p_a, (a \in k)\), the prime divisor in \(n(x-a)\) and denote by \(p\) the prime divisor in \(n(x)\).

Then we obtain obviously that \(p_a, (a \in k), p\) are all prime divisors that are ramified over \(k(x)\). In order to investigate \(g\left(\frac{ax+b}{cx+d}\right)\) and \(n\left(\frac{ax+b}{cx+d}\right)\) for the elements of the form \(\frac{ax+b}{cx+d}, (ad-bc \neq 0, k \ni a, b, c, d)\), it is enough to consider the three cases \(x-a, \frac{1}{x-a}\) and \(\frac{x-a}{x-b}, (a \neq b, k \ni a, b)\). For the principal divisor of \(z\) equals to the principal divisor of \(hz\) for any non-zero element \(z\) in \(K\) and any non-zero element \(h\) in \(k\), in general.

\(p\) divides \(n(x)\) and \(p_a\) divides \(g(x-a), g\left(\frac{x-a}{x-b}\right)\) and \(n\left(\frac{1}{x-a}\right)\) for \(a \in k\). Therefore every prime divisor that is ramified over \(k(x)\) divides always some \(g\left(\frac{ax+b}{cx+d}\right)n\left(\frac{ax+b}{cx+d}\right)\).

Example 2. We shall put \(k = GF(2), y^a + xy = x\) and \(K = k(x, y)\). Then we get \(|k| = 2, l = k\) and \(g = 0\), whence \(|k| = [K : l(x)] + g - 1 = 2\) holds.

We shall denote by \(p_a\) the numerator divisor of \(y\) and by \(p\) the denominator divisor of \(y\). Then we have easily that \(p_a\) and \(p\) are prime divisors of \(K\) and they are all prime divisors that are ramified over \(k(x)\).

In this case, the set of all elements of the form \(\frac{ax+b}{cx+d}, (ad-bc \neq 0, k \ni a, b, c, d)\) is \(\{x, \frac{1}{x}, x-1, \frac{x-1}{x}, \frac{x}{x-1}, \frac{x-1}{x}\}\). Obviously, \(p_a\) divides \(g(x), g\left(\frac{x}{x-1}\right), g\left(\frac{x-1}{x}\right)\) and \(n(x-1)\) and \(p\) divides \(n(x-1)\). Therefore we can not choose \(a, b, c\) and \(d\) in \(k\) such that every prime divisor that is ramified over \(k(x)\) does not appear in \(g\left(\frac{ax+b}{cx+d}\right)n\left(\frac{ax+b}{cx+d}\right)\).
Bibliography
