<table>
<thead>
<tr>
<th>Title</th>
<th>On the Ring Satisfying the Finite Continuous Quotient's Chain of the Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Eguchi, Toshio</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学学芸学部自然科学研究報告 vol.15, p.1-5; 1964</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964-03-30</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/33185</td>
</tr>
</tbody>
</table>
On the Ring Satisfying the Finite Continuous Quotient’s Chain of the Ideal

Toshio EGUCHI

Department of Mathematics, Nagasaki University
(Received December 2, 1963)

The object of this report is to find out some qualities of this ring satisfying the finite continuous quotient’s chain of the ideal and to examine a nilpotent element of the ring which has the representation as the intersection of the finite number of strong-primary ideals further.

1. On the ring satisfying the finite continuous quotient’s chain of the ideal

Definition

Set \(\mathfrak{D} \) of all elements which are nilpotent with respect to \(a \) is a semiprimary ideal including \(a \). This \(\mathfrak{D} \) is called semi-primary ideal belonging to \(a \).

Theorem 1.

Let \(\mathfrak{R} \) be a commutative ring satisfying the finite continuous quotient’s chain of the ideals. Then there are the least-primary ideals containing arbitrary ideal \(a \) of \(\mathfrak{R} \) and the ideal \(r \) which satisfy \(p \) which satisfy \(p^a \subseteq a \) for finite positive integer \(n \), moreover, either \(r \) coincides with \(p \) or \(r \) is not contained in \(p \).

Proof

Let \(\mathfrak{D} \) be a semi-primary ideal belonging to \(a \), then we must consider the following two cases.

I. When \(\mathfrak{D} \) is a primary ideal

As \(\mathfrak{D} \) is a least-primary ideal, we can put \(\mathfrak{D} = p \). If \(a \) is not a semi-primary ideal, there are two elements \(h_1, r_1 \) which satisfy the following formulas,

\[
\begin{align*}
 h_1 r_1 & \subseteq a \\
 h_1 & \subseteq p \\
 h_1 & \subseteq a \\
 r_1 & \subseteq p
\end{align*}
\]

hence \(a \subseteq a_1 = (r_1) \) exist. Moreover, \(p \) is a semi-primary ideal belonging to \(a_1 \). If \(a_1 \) is not a semi-primary ideal yet, there are two elements \(h_2, r_2 \), which satisfy the following formulas,

\[
\begin{align*}
 h_2 r_2 & \subseteq a_1 \\
 h_2 & \subseteq p \\
 h_2 & \subseteq a_1 \\
 r_2 & \subseteq p
\end{align*}
\]

and \(a \subseteq a_1 \subseteq a = (r_2) = (r_1 r_2) \subseteq p \) exist.
is held. But from the assumption, this procedure must come to end, therefore \(a_m \) satisfying this formula

\[
(1) \quad a_m = a_1 : (r) \subseteq p \quad r = r_1 r_2 \cdots r_m \subseteq p
\]

becomes semi-primary ideal belonging \(p \) at least. If \(a_m = p \) by letting \(r \) take the place of \((r) \) we get

\[
p \subseteq a, \quad r \subseteq p
\]

Therefore our theorem is proved. In the next place we examine the following case, \(a_m \subseteq p \). Since \(p \) is a semi-primary ideal belonging to \(a_m \), so \(h_1' \subseteq p \), \(h_1' \subseteq a_m \) is nilpotent with respect to \(a_m \). Moreover, as \(a_m \) is semi-primary ideal, \(a_m \subseteq a_1' = a_m : (h_1') \subseteq p \) exist and \(a_1 \) is a semi-primary ideal belonging to \(a_1' \). If \(a_1' \) does not coincide with \(p \), this procedure is repeated. Hence, we can finally find out an element \(h' \) satisfying \(p = a_1' = a_m : (h') \), \(h' = h_1' h_2' \cdots h_n' \subseteq a_m \), \(h' \subseteq p \) (1)' from the assumption. As \(a_m \) is a semi-primary ideal we have

\[
(2) \quad a_m \subseteq q_1 = a_m : p \subseteq p
\]

from (1'). Also, \(q_1 \) is a semi-primary ideal. From (1) and (2) we have

\[
(3) \quad a \subseteq q_1 = a : (r) \subseteq p : a \quad \text{is not semi-primary}
\]

\[
(3)' \quad a \subseteq q_1 = a : p \quad : a \quad \text{is semi-primary}
\]

As \(q_1 \) is semi-primary ideal belonging to \(p \) here, in the same way as the preceding, we have

\[
(4) \quad q_1 \subseteq q_2 = q_1 : p = a_m : p^2 = a : (r)p^2 \subseteq p, \quad r \subseteq p : a \quad \text{is not semi-primary}
\]

\[
(4)' \quad q_1 \subseteq q_2 = q_1 : p = a : p^2 \quad : a \quad \text{is semi-primary}
\]

From the assumption this procedure must come to end, hence

\[
p = a_{k-1} = a : (r)p^{k-1} \quad r \not\subseteq p \quad \text{or} \quad p = a_{k-1} = a : p^{k-1}
\]

is get at last. Namely, we have \(p \subseteq a, \quad r \not\subseteq p \) and moreover, either \(r \) coincide with \(p \) or \(r \) is not contained in \(p \).

II. When \(\mathfrak{D} \) is not prime ideal

From the assumption there is a element \(r_0 \) satisfying

\[
(5) \quad p = \mathfrak{D} : (r_0) \quad r_0 \subseteq p
\]

This primary ideal \(p \) is clearly a least-primary ideal including \(a \). As \(p r_0 \subseteq \mathfrak{D} \) exist for arbitrary element \(p \) of \(p \) does not belonging to \(\mathfrak{D} \), \((p r_0) \subseteq a \) is held. Therefore, for \(r_0 r = r_1 \), ideal quotient \(a_1 = a : (r_1) \) implies \(p^* \). But as \(p \) is not belong to \(\mathfrak{D} \), \(p^* \) is not also belong to \(\mathfrak{D} \). Accordingly \(p^* \) does not contained to \(a \) and

\[
(6) \quad a \subseteq a_1 = a : (r_1) \subseteq p, \quad r_1 \subseteq p, \quad p^* \subseteq a,
\]
Ring Satisfying the Finite Continuous Quotient's Chain of the Ideal

is held. For a semi-primary ideal \(\mathfrak{P} \) of \(a \), if \(\mathfrak{P} \subseteq \mathfrak{P} \) hold for a semiprimary ideal \(\mathfrak{P} \) of \(a \) exist from (6), so we have \(\mathfrak{P} \subseteq \mathfrak{P} \subseteq \mathfrak{P} \subseteq \mathfrak{P} \subseteq \mathfrak{P} \subseteq \mathfrak{P} \). If \(\mathfrak{P} \) is a primary ideal, there is an element \(\gamma' \) satisfying \((\mathfrak{P}, \gamma') \subseteq \mathfrak{P} \). If \(\gamma' \) is not a element of \(\mathfrak{P} \), in the same way as the preceding.

For this element \(\gamma' \), \((\mathfrak{P}, \gamma') \subseteq \mathfrak{P} \), exist. So, if we take \((\gamma', \gamma') \subseteq \mathfrak{P} \), is held. Also, \(\mathfrak{P} \) is not contained in \(\mathfrak{P} \), so the semi-primary ideal \(\mathfrak{P} \) of \(a \) implies \(\mathfrak{P} \) and \(\mathfrak{P} \subseteq \mathfrak{P} \subseteq \mathfrak{P} \) is obtained. By rotation of this procedure we get \(\mathfrak{P} \subseteq \mathfrak{P} \subseteq \mathfrak{P} \subseteq \mathfrak{P} \). From the assumption, therefore, we can find an ideal \(\gamma' \) satisfying

\[
(7) \quad a \subseteq a : (\mathfrak{P}, \gamma') \subseteq \mathfrak{P}.
\]

is held. Also, \(\mathfrak{P} \) is not contained in \(\mathfrak{P} \), so the semi-primary ideal \(\mathfrak{P} \) of \(a \) implies \(\mathfrak{P} \) and \(\mathfrak{P} \subseteq \mathfrak{P} \). From the result of 1. From (6) and (7)

\[
\mathfrak{P} = a : (\gamma_1 \gamma_2 \cdots \gamma_k) \subseteq \mathfrak{P}.
\]

is held. Hence, if we put \(\gamma = \gamma_1 \gamma_2 \cdots \gamma_k \), \(\mathfrak{P} \subseteq \mathfrak{P} \) is held for \(\gamma \subseteq \mathfrak{P} \) and \(\mathfrak{P} \subseteq \mathfrak{P} \) for \(\gamma \subseteq \mathfrak{P} \) from (8) and (9).

Namely our theorem is proved.

Definition

\(\mathfrak{P} \) is called primary ideal belonging to \(a \) if there is an element \(d \) satisfying \(\mathfrak{P} = a : (d) \), \(d \subseteq a \) for a primary ideal \(\mathfrak{P} \). As semi-primary ideal \(\mathfrak{Q} \) belonging to semi-primary ideal \(\mathfrak{Q} \) is a primary ideal we get \(\mathfrak{Q} \subseteq \mathfrak{Q} \) from the first case of theorem 1.

Accordingly we have the following theorem.

Theorem 2.

Let \(\mathfrak{R} \) be a commutative ring satisfying the finite continuous quotient's chain of ideals. Then there is a finite positive integer \(n \) satisfying \(\mathfrak{R} \subseteq \mathfrak{R} \) for the semi-primary ideal \(\mathfrak{R} \) belonging ideal \(a \) of \(\mathfrak{R} \).

Proof

It is evident that there are least-primary ideals from theorem 1, so let \(\mathfrak{P}_1, \mathfrak{P}_2, \ldots \) are least-primary ideals. As we can find an ideal \(\mathfrak{P}_i \) satisfying \(\mathfrak{P}_1 \subseteq \mathfrak{P}_i \subseteq a \), \(\mathfrak{P}_1 \subseteq \mathfrak{P}_i \) from theorem 1, \(a \subseteq a : \mathfrak{P}_1, \mathfrak{P}_2, \ldots \) is held. Also \(\mathfrak{P}_1, \mathfrak{P}_2, \ldots \) are least-primary ideals, so we have

\[
a_1 \subseteq a_2 = a_1 : \mathfrak{P}_1, \mathfrak{P}_2, \ldots \subseteq a_1 : \mathfrak{P}_1, \mathfrak{P}_2, \ldots (i=3,4,\ldots)
\]

in the same way as the preceding. But as this procedure must come to an end from the assumption, we have

\[
a_0 = a : \mathfrak{P}_1, \mathfrak{P}_2, \ldots \subseteq a
\]

at last. On the other hand, as \(\mathfrak{P} \subseteq \mathfrak{P}_i \) \((i=1,2,\ldots)\) exist, we get \(\mathfrak{P} \subseteq a \) by putting
2. On nilpotent element in commutative ring generally it is known that in a ring, if it has a nilpotent, then there is a nilpotent ideal, but its inverse does not always exist. Only if we suppose the division chain's condition further, then the ring has a nilpotent element. Here, however, if any ideal of a commutative ring has the representation as the intersection of the finite number strong primary ideals further, then the ring also has a nilpotent element. This is the extension of the former.

Theorem

Let \(\mathfrak{A} \) be a commutative ring whose arbitrary ideals have the representation as the intersection of finite number of the strong semi-primary ideals. Then the nilpotent ideal does not being zero of \(a \), implies a nilpotent element outside of zero element.

Proof

Let \(a \) be any ideal of a commutative ring, and let \(P_1, P_2, \ldots, P_r \) are the least-primary ideals of \(a \). Suppose that \(q \) is an element of \(a \) does not being zero. Then there exist suitable elements \(P_{i_1}, P_{i_2}, \ldots, P_{i_j} \) for every \(P_i \) and natural number \(n_i \) such that

(1) \(P_i^{n_i} \subseteq \langle P_{i_1}, P_{i_2}, \ldots, P_{i_j}, q \rangle \subseteq a \quad i = 1, 2, \ldots, r \)

Since \(a^2 = a \) and \(a \subseteq P_i \) we see that for any natural number \(s \).

(2) \(a \subseteq \langle P_{i_1}, P_{i_2}, \ldots, P_{i_j}, q \rangle \subseteq P_i^s \quad (i = 1, 2, \ldots, r) \)

is held. Now, from the product of \(r \) number formulas in (2), we obtain

\[a = a \subseteq \langle P_{i_1}, P_{i_2}, \ldots, P_{i_j}, q \rangle \subseteq \langle P_{i_1}, P_{i_2}, \ldots, P_{i_j}, q \rangle \]

But by the hypothesis we have

\[a = q_1 \cap q_2 \cap \cdots \cap q_r \]

Where \(q_i \) are the strong primary ideals. Therefore, since

\[q_1 q_2 \cdots q_r \subseteq a \]

and even \(P_i \) is the least-primary ideals of \(a \), so it follows that for suitably large number \(s \)

\[P_i^s \subseteq a \]

and therefore

\[a = \langle P_{i_1}, P_{i_2}, \ldots, P_{i_j}, q \rangle \subseteq \langle P_{i_1}, P_{i_2}, \ldots, P_{i_j}, q \rangle \]

Thus we may write

(3) \[a = (a_1, a_2, \ldots, a_m) \]
Ring Satisfying the Finite Continuous Quotient's Chain of the Ideal

By (3), we see that for any natural number \(t \)
\[
(a_1^t, a_2^t, \ldots, a_n^t) \geq (a_1, a_2, \ldots, a_n)^t = a^t = a
\]

However, it follows that
\[
a = (a_1, a_2, \ldots, a_m) \geq (a_1^t, a_2^t, \ldots, a_m^t)
\]
hence, there exist the following formula
\[
(4) \ a = (a_1^t, a_2^t, \ldots, a_n^t)
\]
Since \(t \) is arbitrary, we can take \(t \geq 2 \), so
\[
\begin{align*}
a_1 &= a_1a_1^2 + a_2a_2^2 + \cdots + a_na_n^2 \\
\vdots \\
a_m &= a_1a_1^m + a_2a_2^m + \cdots + a_na_n^m
\end{align*}
\]
is held by (3), (4). By multiplying every equivalence of (5) by \(a \in \alpha \), where \(a \neq 0 \), we have
\[
\begin{align*}
(a_{11} - a) a_1 + a_1^2 a_2 + \cdots + a_n a_n &= 0 \\
\vdots \\
(a_{nm} - a) a_m &= 0
\end{align*}
\]
Now, let \(D \) be the determinant of the coefficient \(a_1, a_2, \ldots, a_m \), then \(Da_t = 0 \) and therefore \(D^2 = 0 \) is held. By developing \(D \), we have
\[
a_{m^2} = a' a_{m^2}
\]
Since \(a \) is arbitrary element of \(\alpha \) so we replace \(a \) with \(a_1 \) hence we have
\[
a_{t^m} = a' a_{t^m}
\]
and accordingly \(a^2 = a' \) is get.
Moreover, since \(a' \neq 0 \) and \(aa' = a \) are held for any element \(a \) of \(\alpha \) so \(a' \) is a unite element.
Thus our theorem is proved.

References

S.MORI : Über Ringe, die den Durchschnittssatz gestatten, Jour. Sci., Hiroshima Univ., Vol. 10 (1940)
———: Über Ringe, die den Durchschnittssatz gestatten, Jour. Sci., Hiroshima Univ., Vol. 11 (1942)
———: Über Ringe, die den Durchschnittssatz gestatten, Jour. Sci., Hiroshima Univ., Vol. 12 (1943)