<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>長崎大学教育学部人文科学研究報告 48, pp.11-15; 1994</td>
</tr>
<tr>
<td>著者</td>
<td>Oda, Michito</td>
</tr>
<tr>
<td>頃期日</td>
<td>1994-03-25</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/33277</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
The Wall Works: folding structure v10 and v20

Michito ODA*

The Wall Work, ‘folding structure v10’ (Fig. 1 and 2) was displayed at the Exhibition of My Own Works in Tokyo in February 1990, and the other Wall Work, ‘folding structure v20’ (Fig. 3 and 4) was displayed at the Exhibition of My Own Works in Tokyo in Autumn 1991. These wall works are conceptual models of ‘folding structure’, and these are also the forms realised from my own idea of ‘variations’ which I had have in mind through making artistic works.

*associate professor, Department of Art, Faculty of Education, Nagasaki University
The Wall Works: folding structure v10 and v20

Fig. 2 The outline of 'folding structure v10'

Fig. 3 folding structure v20 (1991) (Photo: S. Saito)

aluminum

v 201: 150^W \times 150^H \times 100^D \text{ mm}

v 202: 300 \times 300 \times 100 (300 \times 300 \times 150) \text{ mm} (\): when unfolded

v 203: 450 \times 450 \times 100 (450 \times 600 \times 150) \text{ mm}

v 204: 600 \times 600 \times 100 (600 \times 900 \times 150) \text{ mm}
Here I introduce a mathematical expression for the description of 'variations' (Fig. 5). 'f(x)' means the concept of a 'folding structure'. If a variable \(x_n \) is given at function \(f(x) \) (that is, an operation for making variations), then a change shown as \(f(x_n) \) will come about, which is one of 'variations'. The 'folding structure v10' has one-dimensional changes, and the 'folding structure v20' has two-dimensional changes.