<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>開始</td>
<td>長崎大学教育学部人文科学研究報告Vol.48 (1994)</td>
</tr>
<tr>
<td>作者</td>
<td>櫻元明（Oda, Michito）</td>
</tr>
<tr>
<td>発行日</td>
<td>1994年3月25日</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/33277</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE

http://naosite.lb.nagasaki-u.ac.jp
The Wall Works: folding structure v10 and v20

Michito ODA*

The Wall Work, ‘folding structure v10’ (Fig.1 and 2) was displayed at the Exhibition of My Own Works in Tokyo in February 1990, and the other Wall Work, ‘folding structure v20’ (Fig.3 and 4) was displayed at the Exhibition of My Own Works in Tokyo in Autumn 1991. These wall works are conceptual models of ‘folding structure’, and these are also the forms realised from my own idea of ‘variations’ which I had have in mind through making artistic works.

Fig.1 folding structure v10 (1990)

aluminum

v 101: 150^w × 150^h × 100^d mm
v 102: 150 × 300 × 100 (150×300×150) mm (): when unfolded
v 103: 150 × 450 × 100 (150×600×150) mm
v 104: 150 × 600 × 100 (150×900×150) mm

*associate professor, Department of Art, Faculty of Education, Nagasaki University
The Wall Works: folding structure v10 and v20

Fig. 2 The outline of 'folding structure v10'

Fig. 3 folding structure v20 (1991) (Photo: S. Saito)

aluminum

v201: 150W × 150H × 100D mm
v202: 300W × 300H × 100 (300×300×150) mm (): when unfolded
v203: 450W × 450H × 100 (450×600×150) mm
v204: 600W × 600H × 100 (600×900×150) mm
Here I introduce a mathematical expression for the description of 'variations' (Fig. 5). 'f(x)' means the concept of a 'folding structure'. If a variable x_n is given at function $f(x)$ (that is, an operation for making variations), then a change shown as $f(x_n)$ will come about, which is one of 'variations'. The 'folding structure v10' has one-dimensional changes, and the 'folding structure v20' has two-dimensional changes.

Fig. 4 The outline of 'folding structure v20'

Fig. 5 A mathematical expression for the description of 'variations'